
TASK 1

using System;
 using System.Linq;
 namespace SIIT_3._1
 {
 public class Population
 {
 Random rand = new Random();
 const int size = 20;
 const double A = 1;
 double[,] parents = new double[size, size];
 double[,] p = new double[size, size];
 double[,] newPopulation = new double[size / 2, size];
 double[] y = new double[size];
 double m;
 double average;
 int[] keys = new int[size];
 public Population()
 {
 double[] genes = new double[size];
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size; j++)
 {
 genes[j] = ((double)rand.Next(-1000, 1001) / 1000);
 parents[i, j] = genes[j];
 }
 y[i] = Function(i);
 }
 }
 public void Cross()
 {
 double[,] reserv = new double[size, size];
 for (int i = 0; i < size; i++)
 keys[i] = i;
 Array.Sort(y, keys);
 for (int i = 0; i < size / 2; i++)
 {
 for (int j = 0; j < size; j++)
 {
 newPopulation[i, j] = parents[keys[i], j];
 }

 }
 int k = 0;
 for (int i = 0; i < size / 2; i++)
 {
 int a = rand.Next(0, size / 2);
 int b = rand.Next(0, size / 2);
 for (int j = 0; j < size; j++)
 {
 p[0, j] = newPopulation[a, j];
 p[1, j] = newPopulation[b, j];
 reserv[0, j] = p[0, j];
 }
 int c = rand.Next(0, size);
 for (int j = size - c; j < size; j++)
 {
 p[0, j] = p[1, j];
 p[1, j] = reserv[0, j];
 }
 for (int j = 0; j < size; j++)
 {
 parents[k, j] = p[0, j];
 parents[k + 1, j] = p[1, j];
 }
 k += 2;
 }
 }
 public void Mutation()
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size; j++)
 {
 int value = rand.Next(0, size);
 if (value == 0)
 {
 parents[i, j] = ((double)rand.Next(-1000, 1001) / 1000);
 }
 }
 y[i] = Function(i);
 }
 }
 public double GetMax()
 {
 m = y.Min();
 return m;
 }
 public double GetAverage()
 {
 average = y.Average();
 return average;
 }
 public double Function(int i)
 {
 double result = 0;
 double sum = 0;
 for (int j = 0; j < size; j++)
 {
 sum += (Math.Pow(parents[i, j], 2) - (A * Math.Cos(2 * Math.PI *
parents[i, j])));
 }
 result = size * A + sum;

 return result;
 }
 }
 }
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace SIIT_3._1
{
 public class Conditional
 {
 public bool Condit(double max)
 {
 if (max == 0)
 {
 return false;
 }
 else
 return true;
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Conditional c = new Conditional();
 Population pop = new Population();
 int i = -1;
 double max = -1;
 double average = 0;
 while (i < 1000)
 {
 i++;
 pop.Cross();
 pop.Mutation();
 max = pop.GetMax();
 average = pop.GetAverage();
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"Iteration.txt", true))
 {
 file.WriteLine(i);
 }
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"Minimum.txt", true))
 {
 file.WriteLine(max);
 }
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"Average.txt", true))
 {
 file.WriteLine(average);
 }
 }
 }
 }
}

Task 2
using System;
using System.Linq;
namespace SIIT_3._1
{
 public class Population
 {
 Random rand = new Random();
 const int size = 20;
 const int size1 = 11;
 const double A = 1;
 double[,] parents = new double[size, size1];
 double[,] p = new double[size, size1];
 double[,] newPopulation = new double[size / 2, size1];
 double[] y = new double[size];
 double[] x = new double[size];
 double m;
 double average;
 double value = 0;
 int[] keys = new int[size];
 public Population()
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size1; j++)
 {
 parents[i, j] = rand.Next(0, 2);
 }
 y[i] = Function(i);
 }
 }
 public void Cross()
 {
 double[,] reserv = new double[size, size1];
 for (int i = 0; i < size; i++)
 keys[i] = i;
 Array.Sort(y, keys);
 for (int i = 0; i < size / 2; i++)
 {
 for (int j = 0; j < size1; j++)
 {
 newPopulation[i, j] = parents[keys[i], j];
 }
 }
 int k = 0;
 for (int i = 0; i < size / 2; i++)
 {
 int a = rand.Next(0, size / 2);
 int b = rand.Next(0, size / 2);
 for (int j = 0; j < size1; j++)
 {
 p[0, j] = newPopulation[a, j];
 p[1, j] = newPopulation[b, j];
 reserv[0, j] = p[0, j];
 }
 int c = rand.Next(0, size1);
 for (int j = size1 - c; j < size1; j++)
 {
 p[0, j] = p[1, j];

 p[1, j] = reserv[0, j];
 }
 for (int j = 0; j < size1; j++)
 {
 parents[k, j] = p[0, j];
 parents[k + 1, j] = p[1, j];
 }
 k += 2;
 }
 }
 public void Mutation()
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size1; j++)
 {
 int value = rand.Next(0, size1);
 if (value == 0)
 {
 parents[i, j] = rand.Next(0, 2);
 }
 }
 y[i] = Function(i);
 }
 }
 public double GetMax()
 {
 m = y.Min();
 return m;
 }
 public double GetAverage()
 {
 average = y.Average();
 return average;
 }
 public double[] GetY()
 {
 return y;
 }
 public double[] GetX()
 {
 return x;
 }
 public double Function(int i)
 {
 string str = "";
 value = 0;
 for (int j = 1; j < size1; j++)
 {
 str += Convert.ToString(parents[i, j]);
 }
 value = BinToDec(str) / 1023;
 if (parents[i, 0] == 0)
 {
 value *= -1;
 }
 double result = 0;
 double sum = 0;
 x[i] = value;
 for (int j = 0; j < size; j++)
 {

 sum += (Math.Pow(value, 2) - (A * Math.Cos(2 * Math.PI * value)));
 }
 result = size * A + sum;
 return result;
 }
 public double BinToDec(string str)
 {
 double res = 0;
 for (int i = 0; i < 8; i++)
 {
 res += double.Parse(str[i].ToString()) * Math.Pow(2, 7 - i);
 }
 return res;
 }
 }

}

using System;
namespace SIIT_3._1
{
 public class Conditional
 {
 public bool Condit(double max)
 {
 if (max == 0)
 {
 return false;
 }
 else
 return true;
 }
 }
 class Program
 {
 static void Main(string[] args)
 {
 Conditional c = new Conditional();
 Population pop = new Population();
 int i = -1;
 double max = -1;
 double average = 0;
 double[] y = new double[20];
 double[] x = new double[20];
 while (i < 10000)
 {
 i++;
 pop.Cross();
 pop.Mutation();
 y = pop.GetY();
 x = pop.GetX();
 max = pop.GetMax();
 average = pop.GetAverage();
 if (i == 9999)
 {
 for (int j = 0; j < 20; j++)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"X.txt", true))
 {
 file.WriteLine(x[j]);
 }

 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"Y.txt", true))
 {
 file.WriteLine(y[j]);
 }
 }
 }
 }
 }
 }
}

Results:

Red point - population

