Alex Hreben

Work 3 “Traveling Salesp erson Problem (TSP)”

Generate 20 cities:
X Y

5,870277 2,410462

6,24687 5,561023
3,147018 5,877736
1,739831 0,012608

0,09536 4,086202
0,111207 9,943961
2,945724 4,111366
7,068257 7,833414
4,324227 0,575959
9,870223 3,913385
7,931424 3,942075
8,978373 9,145372
9,136727 4,367255
4,663458 2,067366
4,342821 9,041177
0,336114 2,368949
9,105318 7,233704
8,288854 1,192617
0,388608 4,14668
3,075011 4,351601

Cities

Distance Matrix:

A
0,00

B c D E F G H 1 J K L M
26819 238868 51515 51606 20855 60197 0,554 09102 87450 3,6805 7,3788 84200
0,00 88451 70092 60433 37730 92934 07303 23458 50769 08487 19951 42618
0,00 36812 82145 41551 83486 3,1170 09,6558 09,6772 88580 14714 06721

0,00 67306 44055 59693 04116 21284 87551 53678 11647 7,1613

0,00 509723 26871 13573 40073 01572 54571 24617 15037

0,00 52145 57038 88698 60220 51430 08517 67444

0,00 95870 1,4032 43202 20045 04491 7,6326

0,00 15858 98431 47701 82508 2,8802

0,00 66808 64846 67078 26916

0,00 91508 88229 17920

0,00 83612 15556

0,00 91797

0,00

Source code:

Citi.java

package com.company;

import java.util.Arraylist;

import static com.company.Constants.*;

public class Cities {
private static ArraylList<City> cities;

public static void init(){

}

cities = new ArraylList<>(CITIES_AMOUNT);
int id 0;
for(int i = @; i < HORIZONTAL_CITIES_AMOUNT; i++){
for(int j = ©; j < VERTICAL_CITIES_AMOUNT; j++){
cities.add(new City(i, j, id));
id++;

public static City getCityByID(int id){

}

return cities.get(id);

public static ArrayList<City> getCities(){

}

return new ArraylList<City>(cities);

Chromosome. java

package com.company;

import java.util.ArrayList;

import java.util.Random;

import static com.company.Constants.*;

N
81136
7,334
0,2183
4,2011
6,2778
4,8553
1,7478
3,3885
2,5224
41519
52327
7,3106
4,2031

0,00

o)
9,2064
9,002
8,8504
45002
44825
44024
7,4146
9,2632
1,8482
0,8155
1,5395
2,2058
1,6274
3,0281

0,00

P
3,5548
76726
3,2402
5,5348
7,2022
48487
0,0029
5,2365
9,4160
1,3785
0,8343
6,1226
7,3301
8,5306
8,3979

0,00

Q
0,2681
28,0792
7,7407
0,2332
28,0056

01,07,782
9,3579
0,4898
3,2837
5,3456
9,0884
1,3419
£,3388
5,8337
2,0145
1,4798

0,00

R
7,4154
3,1779
43638
6,7676
3,5685
0,1352
8,7653
0,6453
4,9004
0,7922
25736
3,2069
3,0235
2,7690
46182
7,7008
48042

0,00

5
5,0827
3,0885
2,5974
28,1082
2,2050
2,6515
5,5182
3,3759
3,3727
0,2675
5,6962
0,6567
0,0686
1,3078
2,9765
9,6758
9,4584
£,4320

0,00

=
9,4062
4,3540
6,1966
9,4527
9,4067
7,7816
6,5507
6,3721
45732
1,6234
1,2351
£,2203
7,1606
0,4043
9,0157
2,3416
1,7062
7,789
6,6036

0,00

import static com.company.Cities.getCityByID;

public class Chromosome implements Comparable({
public Arraylist<Integer> genes = new ArrayList<>(CITIES AMOUNT) ;

private static Random random = new Random() ;
Chromosome () {
int tmp;

for(int 1 = 0; i < CITIES AMOUNT; i++) {

genes.add (random.nextInt (CITIES AMOUNT)) ;

Chromosome (Chromosome parl, Chromosome par?2) {
int cutPoint = random.nextInt (CITIES AMOUNT) ;

for(int 1 = 0; i < cutPoint; i++) {
genes.add (parl.genes.get (i));

for (int 1 = cutPoint; i < CITIES AMOUNT; i++) {
genes.add (par2.genes.get (i))

if (random.nextDouble () > 0.85) {
swapRandomGenes () ;

/*
if (random.nextDouble () >= 0) {
int id = random.nextInt (genes.size());
genes.set (id, (int) (genes.get (id) *random.nextDouble () *2));
}
if (random.nextDouble () >= 0) {
int id = random.nextInt (genes.size()):;
genes.set (id, random.nextInt (CITIES AMOUNT)) ;
}
*/

private void swapRandomGenes () {

int idl = random.nextInt (genes.size());
int id2 = random.nextInt (genes.size());
while (idl == 1d2) {

id2 = random.nextInt (genes.size());
t
int tmp = genes.get (idl);

genes.set (idl, genes.get (id2));
genes.set (id2, tmp);

Chromosome (ArrayList<Integer> genes) {

if (genes.size() == CITIES AMOUNT) {
this.genes = new ArrayList<>(genes);
} else {

throw new RuntimeException ("Got a wrong amount of genes!");

public double getFitness /() {

ArrayList<Integer> path = getPath();

City cityl, city2;

double fitness = 0;

for(int i = 0; 1 < CITIES AMOUNT - 1; i++) {
cityl = getCityByID(path.get(i));
city2 = getCityByID(path.get(i + 1));
fitness += cityl.distance(city2);

}

cityl = getCityByID(path.get(0));

city?2 getCityByID(path.get (path.size () - 1));

fitness += cityl.distance(city2);

return fitness;

public ArrayList<Integer> getPath () {
ArraylList<Integer> path = new ArrayList<>(CITIES AMOUNT) ;
ArrayList<City> citiesPool;
citiesPool = Cities.getCities();
path.add (12);
citiesPool.remove (12);
int tmp = 0, 1 = 0;
while (citiesPool.size () > 0) {
tmp = genes.get(i);
while (tmp >= citiesPool.size()) {
tmp -= citiesPool.size();
}
path.add(citiesPool.get (tmp) .getID()) ;
citiesPool.remove (tmp) ;
i++;

return path;

QOverride
public int compareTo (Object chromosome) {
double compareFitness=((Chromosome)chromosome) .getFitness();

if (getFitness () > compareFitness) {
return 1;

} else if (getFitness () == compareFitness) {
return 0;
} else {

return -1;

