
Alex Hreben

Work 3 “Traveling Salesp erson Problem (TSP)”

Generate 20 cities:

 X Y

5,870277 2,410462

6,24687 5,561023

3,147018 5,877736

1,739831 0,012608

0,09536 4,086202

0,111207 9,943961

2,945724 4,111366

7,068257 7,833414

4,324227 0,575959

9,870223 3,913385

7,931424 3,942075

8,978373 9,145372

9,136727 4,367255

4,663458 2,067366

4,342821 9,041177

0,336114 2,368949

9,105318 7,233704

8,288854 1,192617

0,388608 4,14668

3,075011 4,351601

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Cities

Distance Matrix:

Source code:

Citi.java

package com.company;

import java.util.ArrayList;

import static com.company.Constants.*;

public class Cities {
 private static ArrayList<City> cities;

 public static void init(){
 cities = new ArrayList<>(CITIES_AMOUNT);
 int id = 0;
 for(int i = 0; i < HORIZONTAL_CITIES_AMOUNT; i++){
 for(int j = 0; j < VERTICAL_CITIES_AMOUNT; j++){
 cities.add(new City(i, j, id));
 id++;
 }
 }

 }
 public static City getCityByID(int id){
 return cities.get(id);
 }
 public static ArrayList<City> getCities(){
 return new ArrayList<City>(cities);
 }
}

Chromosome.java

package com.company;

import java.util.ArrayList;

import java.util.Random;

import static com.company.Constants.*;

import static com.company.Cities.getCityByID;

public class Chromosome implements Comparable{

 public ArrayList<Integer> genes = new ArrayList<>(CITIES_AMOUNT);

 private static Random random = new Random();

 Chromosome(){

 int tmp;

 for(int i = 0; i < CITIES_AMOUNT; i++){

 genes.add(random.nextInt(CITIES_AMOUNT));

 }

 }

 Chromosome(Chromosome par1, Chromosome par2){

 int cutPoint = random.nextInt(CITIES_AMOUNT);

 for(int i = 0; i < cutPoint; i++) {

 genes.add(par1.genes.get(i));

 }

 for(int i = cutPoint; i < CITIES_AMOUNT; i++){

 genes.add(par2.genes.get(i));

 }

 if(random.nextDouble() > 0.85) {

 swapRandomGenes();

 }

/*

 if(random.nextDouble() >= 0){

 int id = random.nextInt(genes.size());

 genes.set(id, (int)(genes.get(id)*random.nextDouble()*2));

 }

 if(random.nextDouble() >= 0){

 int id = random.nextInt(genes.size());

 genes.set(id, random.nextInt(CITIES_AMOUNT));

 }

*/

 }

 private void swapRandomGenes(){

 int id1 = random.nextInt(genes.size());

 int id2 = random.nextInt(genes.size());

 while(id1 == id2){

 id2 = random.nextInt(genes.size());

 }

 int tmp = genes.get(id1);

 genes.set(id1, genes.get(id2));

 genes.set(id2, tmp);

 }

 Chromosome(ArrayList<Integer> genes){

 if(genes.size() == CITIES_AMOUNT){

 this.genes = new ArrayList<>(genes);

 } else {

 throw new RuntimeException("Got a wrong amount of genes!");

 }

 }

 public double getFitness(){

 ArrayList<Integer> path = getPath();

 City city1, city2;

 double fitness = 0;

 for(int i = 0; i < CITIES_AMOUNT - 1; i++){

 city1 = getCityByID(path.get(i));

 city2 = getCityByID(path.get(i + 1));

 fitness += city1.distance(city2);

 }

 city1 = getCityByID(path.get(0));

 city2 = getCityByID(path.get(path.size() - 1));

 fitness += city1.distance(city2);

 return fitness;

 }

 public ArrayList<Integer> getPath(){

 ArrayList<Integer> path = new ArrayList<>(CITIES_AMOUNT);

 ArrayList<City> citiesPool;

 citiesPool = Cities.getCities();

 path.add(12);

 citiesPool.remove(12);

 int tmp = 0, i = 0;

 while(citiesPool.size() > 0){

 tmp = genes.get(i);

 while(tmp >= citiesPool.size()){

 tmp -= citiesPool.size();

 }

 path.add(citiesPool.get(tmp).getID());

 citiesPool.remove(tmp);

 i++;

 }

 return path;

 }

 @Override

 public int compareTo(Object chromosome) {

 double compareFitness=((Chromosome)chromosome).getFitness();

 if(getFitness() > compareFitness) {

 return 1;

 } else if(getFitness() == compareFitness){

 return 0;

 } else {

 return -1;

 }

 }

