Maxim Tatachka SIIT 05.10.2016

City
10
9 4
8
7 *—
6 4
> M ¢ Paal
4 L 4 \ 2 L 4
3 4 L 4
2 L 4 *— o —
1 *—o
0 . T T T T .
0 2 4 6 8 10 12

#include "stdafx.h"
#include <iostream>
#include <windows.h>
#include <vector>
#include <algorithm>
#include <time.h>
#include <math.h>

using namespace std;

// fitness
double fitness(const vector<double>& chromosoma) {
double summ = @;
for (double i = @; i < chromosoma.size() - 1; i++) {
summ += chromosomal[i];

}

return summ;

}

bool func(const vector<double>& a, const vector<double>& b) {
return fitness(a) < fitness(b);

}

int main()
{
srand(time(NULL));
double sizeOfPopulation, rod2Nomer, minl, min, average, min2, averagel,
massXY[40], massMap[20],summl,x,mel;
X = 0;
mel = 9;

summl 0;

min = ©
minl =
min2 = @;
average = 0;

averagel = 0;
sizeOfPopulation = 100;

)
)

vector<vector<double>> population;

// started population
for (double i = @; i < sizeOfPopulation; i++) {
vector<double> chromosoma;

for (int j = 0; j < 40; j++){
massXY[j] = rand() % 100 / 10;

}

for (int k = 0; k < 20; k++){
massMap[k] = sqrt((pow(massXY[k]-massXY[k+2], 2) * pow(massXY[k + 1]
- massXY[k + 31,2)));
cout << massMap[k]<<endl;
chromosoma.push_back(massMap[k]);

population.push_back(chromosoma);

}

// cout started population
cout << "Started population:
for (auto e : population) {

<< endl;

for (auto 1 : e)
average += fitness(e);

if (minl > fitness(e)){
minl = fitness(e);

}
¥

cout << "min = << minl << endl;
cout << "AVERAGE = " << average / 200 << endl;
average = 0;
for (double steps = 0; steps < 100; steps++) {
// choose parents and create child
vector<vector<double>> potomki;
for (double i = @; i < sizeOfPopulation; i++) {
double rodiNomer = rand() % (population.size()/2);
vector<double> roditel_1 = population[rodlNomer];
double rod2Nomer = rand() % (population.size()/2);
vector<double> roditel 2 = population[rod2Nomer];
// create
vector<double> potomok_1, potomok_2;

double chislo = rand() % (roditel_1.size() - 2) + 1;

potomok_1.insert(potomok_1.end(), roditel_1.begin(),
roditel_1.begin() + chislo);

potomok_1.insert(potomok_1.end(), roditel_2.begin() + chislo,
roditel 2.end());

potomok_2.insert(potomok_2.end(), roditel 2.begin(),
roditel_2.begin() + chislo);

potomok_2.insert(potomok_2.end(), roditel_1.begin() + chislo,
roditel_1.end());

potomki.push_back(potomok_1);

potomki.push_back(potomok_2);

}

// mutation
double ver_mutazii = @.001; // 0.001
for (double i = @; i < potomki.size(); i++) {
double rn = rand() % 100 + 1;
if (rn < ver_mutazii) {
double pos = rand() % (potomki[@].size() - 4) + 2;
double buff = potomki[i][pos - 1];
potomki[i][pos - 1] = potomki[i][pos + 1];
potomki[i][pos + 1] = buff;

}

cout << "Iteration: " << steps + 1 <<endl;
for (auto e : population) {

cout << fitness(e) << endl;
for (auto 1 : e)

cout << 1 <«
average += fitness(e);

if (min > fitness(e)){
min = fitness(e);

}
}
cout << "min = " << min << endl;
cout << "AVERAGE = " << average / 400 << endl;
if ((min == min2) && (average == averagel))
{
cout << "Finished population:" << endl;
cout << "min = " << min2 << endl;
cout << "AVERAGE = " << average / 400 << endl;
break;

}

averagel = average;
min2 = min;

average = 0;

min = 0;

// select new pop

vector<vector<double>> vse;

vse.insert(vse.end(), population.begin(), population.end());
vse.insert(vse.end(), potomki.begin(), potomki.end());
sort(vse.begin(), vse.end(), func);

population.clear();

for (double i = @; i < (sizeOfPopulation); i++) {
population.push_back(vse.at(i));

}

}

system("Pause");
return 0;

