
Maxim Tatachka SIIT 05.10.2016

City

#include "stdafx.h"
#include <iostream>
#include <windows.h>
#include <vector>
#include <algorithm>
#include <time.h>
#include <math.h>

using namespace std;

// fitness
double fitness(const vector<double>& chromosoma) {
 double summ = 0;
 for (double i = 0; i < chromosoma.size() - 1; i++) {
 summ += chromosoma[i];

 }

 return summ;
}

bool func(const vector<double>& a, const vector<double>& b) {
 return fitness(a) < fitness(b);
}

int main()
{
 srand(time(NULL));
 double sizeOfPopulation, rod2Nomer, min1, min, average, min2, average1,
massXY[40], massMap[20],summ1,x,mel;
 x = 0;
 mel = 9;
 summ1 = 0;

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12

Ряд1

 min = 0;
 min1 = 0;
 min2 = 0;
 average = 0;
 average1 = 0;
 sizeOfPopulation = 100;

 vector<vector<double>> population;

 // started population
 for (double i = 0; i < sizeOfPopulation; i++) {
 vector<double> chromosoma;

 for (int j = 0; j < 40; j++){
 massXY[j] = rand() % 100 / 10;

 }

 for (int k = 0; k < 20; k++){
 massMap[k] = sqrt((pow(massXY[k]-massXY[k+2], 2) * pow(massXY[k + 1]
- massXY[k + 3],2)));
 cout << massMap[k]<<endl;
 chromosoma.push_back(massMap[k]);
 }

 population.push_back(chromosoma);
 }

 // cout started population
 cout << "Started population:" << endl;
 for (auto e : population) {

 for (auto l : e)

 average += fitness(e);

 if (min1 > fitness(e)){
 min1 = fitness(e);
 }

 }
 cout << "min = " << min1 << endl;
 cout << "AVERAGE = " << average / 200 << endl;
 average = 0;
 for (double steps = 0; steps < 100; steps++) {
 // choose parents and create child
 vector<vector<double>> potomki;
 for (double i = 0; i < sizeOfPopulation; i++) {
 double rod1Nomer = rand() % (population.size()/2);
 vector<double> roditel_1 = population[rod1Nomer];
 double rod2Nomer = rand() % (population.size()/2);
 vector<double> roditel_2 = population[rod2Nomer];
 // create
 vector<double> potomok_1, potomok_2;

 double chislo = rand() % (roditel_1.size() - 2) + 1;

 potomok_1.insert(potomok_1.end(), roditel_1.begin(),
roditel_1.begin() + chislo);

 potomok_1.insert(potomok_1.end(), roditel_2.begin() + chislo,
roditel_2.end());
 potomok_2.insert(potomok_2.end(), roditel_2.begin(),
roditel_2.begin() + chislo);
 potomok_2.insert(potomok_2.end(), roditel_1.begin() + chislo,
roditel_1.end());
 potomki.push_back(potomok_1);
 potomki.push_back(potomok_2);

 }

 // mutation
 double ver_mutazii = 0.001; // 0.001
 for (double i = 0; i < potomki.size(); i++) {
 double rn = rand() % 100 + 1;
 if (rn < ver_mutazii) {
 double pos = rand() % (potomki[0].size() - 4) + 2;
 double buff = potomki[i][pos - 1];
 potomki[i][pos - 1] = potomki[i][pos + 1];
 potomki[i][pos + 1] = buff;
 }
 }

 cout << "Iteration: " << steps + 1 <<endl;
 for (auto e : population) {

 cout << fitness(e) << endl;

 for (auto l : e)
 cout << l << " ";
 average += fitness(e);

 if (min > fitness(e)){
 min = fitness(e);
 }
 }

 cout << "min = " << min << endl;
 cout << "AVERAGE = " << average / 400 << endl;

 if ((min == min2) && (average == average1))
 {
 cout << "Finished population:" << endl;
 cout << "min = " << min2 << endl;
 cout << "AVERAGE = " << average / 400 << endl;
 break;
 }

 average1 = average;
 min2 = min;
 average = 0;
 min = 0;

 // select new pop
 vector<vector<double>> vse;
 vse.insert(vse.end(), population.begin(), population.end());
 vse.insert(vse.end(), potomki.begin(), potomki.end());
 sort(vse.begin(), vse.end(), func);

 population.clear();
 for (double i = 0; i < (sizeOfPopulation); i++) {
 population.push_back(vse.at(i));
 }

 }

 system("Pause");
 return 0;
 }

