1. Create 20 cities

10 . T

2. Calculate distances between them:

NOTE: Table is not ready yet...

Source code:

#!/usr/bin/env python

-*- coding: utf-8 -*-

__author__ = ‘'arl’

import random

import math

import matplotlib.pyplot as plt

import itertools

def main():
cities = gen cities(20, 0, 10, 0, 10)
print(cities)

10

plot cities(cities)
distances = calc distances(cities)
print(distances)
print(calc _all allowed ways and their distances(cities, distances))
def calc all allowed ways and their distances(cities, distances):
ids [city['id'] for city in cities]
ans []
for cities idx in itertools.permutations(ids, len(cities)):
ans.append(cities idx)
ways = [list(way) for way in ans[0:len(cities) - 111
for way in ways:
way .append(way[0])
print(ways)
results = []
for way city in ways:
dist = 0
for city id in xrange(len(way city) - 1):
for distance in distances:
if (way city[city id] is distance['from'] and way city[city id +
1] is distance['to']) or (
way city[city id] is distance['to'] and way city[city id
+ 1] is distance['from']):
dist += distance['dist"']
print("Step", way city[city id], way city[city id + 1])
break
print(dist)
results.append({'way': way city, "dist": dist})
return results
def plot cities(cities):
X = [city['x'] for city in cities]
y = [city['y'] for city in cities]
plt.plot(x, y, 'ro")
for x ¢, y ¢ in zip(x, y):
plt.text(x c, y c, "%6.2f : %6.2f" % x c, y C)
plt.show()
def gen cities(N, from x, to x, from y, to y):
cities = []
id = 'Z!
for i in xrange(N):
cities.append({"x": random.uniform(from x, to x), "y":
random.uniform(from y, to y), "id": id})

if id is 'Z':
id = 'A’
continue

id = chr(ord(id) + 1)
return cities
def calc dist between points(point 1, point 2):
return math.sqrt(math.pow(point 1['x'] - point 2['x"'], 2) +
math.pow(point 1['y"'] - point 2['y"'], 2))
def calc distances(cities):
dists = []
n = len(cities)
for i in xrange(n):
for j in xrange(i + 1):
r = calc dist between points(cities[i], cities[j])
print(r, i, j, cities[i], cities[j])
dists.append({'from': cities[j]['id"'], 'to': cities[i]['id'],
"dist": r})
return dists

if name == "'_main__
main()

