
Modern intelligent IT

Lab 2 (05.10.2016)

Akira Imada

Student – Malcev Maxim (AI-10)

TSP with 20 cities.

1) I generate 20 cities:

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Cities

2) Calculate the distance matrix:

3) I use GA and evolve chromosomes to be the tours of minimum length.

Show the graph of fitness vs generation:

4) Minimum tour in the first generation:

0

5

10

15

20

25

30

35

40

45

50

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

Fitness vs generation

5) Minimum tours in the intermediate generation:

6) Minimum tour in the final generation:

Source code:

package com.company;

import java.io.File;

import java.io.FileNotFoundException;

import java.io.PrintWriter;

public class Main {

 public static void main(String[] args) {

 Population population = new Population();

 Cities.init();

 File fFitness = new File("AverageLenghts.txt");

 File fTopFitness = new File("MaximumLenghts.txt");

 try {

 PrintWriter pwFitness = new PrintWriter(fFitness);

 PrintWriter pwTopFitness = new PrintWriter(fTopFitness);

 pwFitness.println(population.getAverageFitness());

 pwTopFitness.println(population.getTopFitness());

 for (int i = 0; i < 100; i++) {

 population.generateNew();

 pwFitness.println(population.getAverageFitness());

 pwTopFitness.println(population.getTopFitness());

 }

 pwFitness.close();

 pwTopFitness.close();

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 }

}

public class City {

 private int x, y, id;

 City(int x, int y, int id){

 this.x = x;

 this.y = y;

 this.id = id;

 }

 public int getID(){

 return id;

 }

 double distance(City city){

 return sqrt(pow(city.x - x, 2) + pow(city.y - y, 2));

 }

}public class Population {

 public ArrayList<Chromosome> chromosomes = new ArrayList<>(POPULATION_SIZE);

 Population(){

 for(int i = 0; i < POPULATION_SIZE; i++){

 chromosomes.add(new Chromosome());

 }

 }

 void generateNew(){

 Collections.sort(chromosomes);

 ArrayList<Chromosome> newChromosomes = new ArrayList<>(POPULATION_SIZE);

 int id1 = 0, id2 = 0;

 Random random = new Random();

 ArrayList<Chromosome> parents = new ArrayList<>();

 for(int i = 0; i < POPULATION_SIZE; i++){

 id1 = random.nextInt((int)(POPULATION_SIZE*PARENTS_PART));

 id2 = random.nextInt((int)(POPULATION_SIZE*PARENTS_PART));

 while(id1 == id2){

 id2 = random.nextInt((int)(POPULATION_SIZE*PARENTS_PART));

 }

 newChromosomes.add(new Chromosome(chromosomes.get(id1),

chromosomes.get(id2)));

 }

 chromosomes = newChromosomes;

 }

 double getAverageFitness(){

 double fitness = 0;

 for(Chromosome chromosome : chromosomes){

 fitness += chromosome.getFitness();

 }

 return fitness/POPULATION_SIZE;

 }

 double getTopFitness(){

 double fitness = Integer.MAX_VALUE;

 for(Chromosome chromosome : chromosomes){

 if(fitness > chromosome.getFitness()){

 fitness = chromosome.getFitness();

 }

 }

 return fitness;

 }

}

