Modern intelligent IT
Lab 2 (05.10.2016)
Akira Imada
Student — Malcev Maxim (Al-10)
TSP with 20 cities.

1) 1 generate 20 cities:
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2) Calculate the distance matrix:
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3) luse GA and evolve chromosomes to be the tours of minimum length.

Show the graph of fitness vs generation:
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Fitness vs generation
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4) Minimum tour in the first generation:
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5) Minimum tours in the intermediate generation:
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6) Minimum tour in the final generation:
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Source code:

package com.company;
import java.io.File;
import java.io.FileNotFoundException;

import java.io.PrintWriter;

public class Main {
public static void main(String[] args) {
Population population = new Population();

Cities.init();
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File fFitness = new File("Averagelenghts.txt");
File fTopFitness = new File("MaximumLenghts.txt");
try {
PrintWriter pwFitness = new PrintWriter(fFitness);
PrintWriter pwTopFitness = new PrintWriter(fTopFitness);
pwFitness.println(population.getAverageFitness());
pwTopFitness.println(population.getTopFitness());
for (int i = 0; i < 100; i++) {
population.generateNew();
pwFitness.println(population.getAverageFitness());
pwTopFitness.println(population.getTopFitness());
}
pwFitness.close();
pwTopFitness.close();
} catch (FileNotFoundException e) {

e.printStackTrace();

}
public class City {

private int x, y, id;
City(int x, int y, int id){
this.x = x;
this.y = y;

this.id = id;

public int getID(){

return id;

}
double distance(City city){

return sqrt(pow(city.x - x, 2) + pow(city.y -y, 2));

}public class Population {

public ArrayList<Chromosome> chromosomes = new ArraylList<>(POPULATION_SIZE);



Population(){
for(int i = @; i < POPULATION_SIZE; i++){

chromosomes.add(new Chromosome());

void generateNew(){

Collections.sort(chromosomes);

ArrayList<Chromosome> newChromosomes = new ArraylList<>(POPULATION_SIZE);
int idl1 = @, id2 = ©;
Random random = new Random();

ArrayList<Chromosome> parents = new ArrayList<>();

for(int i = @; i < POPULATION_SIZE; i++){

idl

random.nextInt((int)(POPULATION_SIZE*PARENTS_PART));
id2 = random.nextInt((int)(POPULATION_SIZE*PARENTS_PART));
while(idl == id2){

id2 = random.nextInt((int)(POPULATION_ SIZE*PARENTS_PART));

newChromosomes.add(new Chromosome(chromosomes.get(idl),
chromosomes.get(id2)));

}

chromosomes = newChromosomes;

double getAverageFitness(){
double fitness = 0;
for(Chromosome chromosome : chromosomes){
fitness += chromosome.getFitness();

}
return fitness/POPULATION_SIZE;



double getTopFitness(){
double fitness = Integer.MAX_VALUE;
for(Chromosome chromosome : chromosomes){
if(fitness > chromosome.getFitness()){

fitness = chromosome.getFitness();

}

return fitness;



