Modern intelligent IT
Lab 2 (05.10.2016)
Akira Imada
Student — Malcev Maxim (Al-10)
TSP with 20 cities.

1) 1 generate 20 cities:

Cities

12

points.bt R X

tf

18
20
27
.57
71

o

e

(%)
& Ra

12

2) Calculate the distance matrix:

c | b | E | _H | L M N | o | P | | |
221 7.3 6.57 232 29 0.1 3.57 3.08 262 36 2.24 3.83 262 178 362 2.93 158 166 133
0 6.67 6.44 9.61 3.58 301 136 207 3.97 5.65 438 3.01 4.59 1.58 171 5.0 084 165 33
[14 7.01 465 754 67 873 564 7.85 .92 9.66 9.58 2.06 78T 9.57 7.23 807 6.89
[} 5.67 376 6.75 675 851 452 6.67 .02 945 872 767 7.85 8.63 6.86 754 6.02
[\ £.06 731 10.57 1129 575 5.65 8.25 12.13 3 10.05 1131 85 953 995 7.06
0 299 453 542 112 354 428 6.33 497 432 527 492 364 435 226
[} 437 374 241 2.88 153 262 2.06 244 439 2.33 237 23 0.8
[243 512 6.97 572 459 5.89 2.62 12 6.35 211 274 453
0 554 6.62 455 958 142 13 142 5.05 178 143 44
0 242 3.43 872 417 43 5.67 402 379 421 155
0 266 [337 532 72 285 515 519 235
[} 497 077 3.39 552 o7 362 324 202
0 473 2.07 207 5.4 269 218 5.15
0 3.39 553 069 379 324 271
| 0 2.15 3.95 084 015 311
| 0 6.1 204 23 485
| [} 435 38 2.68
| [087 2.83
| [298
[}

3) luse GA and evolve chromosomes to be the tours of minimum length.

Show the graph of fitness vs generation:

50
45
40
35
30
25
20
15
10

5

0

~— 00 N
i

o~
o

(Y]
o

™
<

Fitness vs generation

~
N

< -
o~

N
[ee]

(o]
[e)]

106
113
120
127
134
141

4) Minimum tour in the first generation:

12

Cities

[=u]

148
155
162
169

i)

176

183
190

197

12

5) Minimum tours in the intermediate generation:

Cities

12
10 + »

o A “ e

8 o

B -]

L - 3 &
i L¥] -}
&
[~
2
0 2 4 B

6) Minimum tour in the final generation:

Cities

12
10 n -

=] K “ o

8 . e

G 2 &

= > &
Fil -] L -}
L)
L}
2
0 2 4 G

Source code:

package com.company;
import java.io.File;
import java.io.FileNotFoundException;

import java.io.PrintWriter;

public class Main {
public static void main(String[] args) {
Population population = new Population();

Cities.init();

= u]

(=]

File fFitness = new File("Averagelenghts.txt");
File fTopFitness = new File("MaximumLenghts.txt");
try {
PrintWriter pwFitness = new PrintWriter(fFitness);
PrintWriter pwTopFitness = new PrintWriter(fTopFitness);
pwFitness.println(population.getAverageFitness());
pwTopFitness.println(population.getTopFitness());
for (int i = 0; i < 100; i++) {
population.generateNew();
pwFitness.println(population.getAverageFitness());
pwTopFitness.println(population.getTopFitness());
}
pwFitness.close();
pwTopFitness.close();
} catch (FileNotFoundException e) {

e.printStackTrace();

}
public class City {

private int x, y, id;
City(int x, int y, int id){
this.x = x;
this.y = y;

this.id = id;

public int getID(){

return id;

}
double distance(City city){

return sqrt(pow(city.x - x, 2) + pow(city.y -y, 2));

}public class Population {

public ArrayList<Chromosome> chromosomes = new ArraylList<>(POPULATION_SIZE);

Population(){
for(int i = @; i < POPULATION_SIZE; i++){

chromosomes.add(new Chromosome());

void generateNew(){

Collections.sort(chromosomes);

ArrayList<Chromosome> newChromosomes = new ArraylList<>(POPULATION_SIZE);
int idl1 = @, id2 = ©;
Random random = new Random();

ArrayList<Chromosome> parents = new ArrayList<>();

for(int i = @; i < POPULATION_SIZE; i++){

idl

random.nextInt((int)(POPULATION_SIZE*PARENTS_PART));
id2 = random.nextInt((int)(POPULATION_SIZE*PARENTS_PART));
while(idl == id2){

id2 = random.nextInt((int)(POPULATION_ SIZE*PARENTS_PART));

newChromosomes.add(new Chromosome(chromosomes.get(idl),
chromosomes.get(id2)));

}

chromosomes = newChromosomes;

double getAverageFitness(){
double fitness = 0;
for(Chromosome chromosome : chromosomes){
fitness += chromosome.getFitness();

}
return fitness/POPULATION_SIZE;

double getTopFitness(){
double fitness = Integer.MAX_VALUE;
for(Chromosome chromosome : chromosomes){
if(fitness > chromosome.getFitness()){

fitness = chromosome.getFitness();

}

return fitness;

