3-Kondrashuk Igor

GA.cs

Source code

using System;

using System.Collections.Generic;

using System.Ling;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3_siit_kondrashuk

{

class GA

{

Random random;
List<Population> historyOfPopulation;
public GA()

random = new Random();
List<Net> Nets = new List<Net>();
for(int i=0;i<100;i++)
{
List<List<double>> w1l = new List<List<double>>();
List<cdouble> w2 = new List<double>();
for(int j=0;j<5;j++)
{
w2.Add(2 * random.NextDouble() - 1);
List<double> tempW1 = new List<double>();
for (intt=0;t<5; t++)
tempW1.Add(2 * random.NextDouble() - 1);
wl.Add(tempW1);

}
Nets.Add(new Net(w1,w2));

}

Population startPopulation = new Population(Nets);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add(startPopulation);

intk=0;
while(historyOfPopulation[k].theBestFitness!=32)

Thread.Sleep(10);
historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));
k++;

’

}

private List<Net> population;

private Population getNextPupulation(Population parentPopulation)
{

List<Net> childrenPopulationNets = new List<Net>();

for (int i=0;i<50;i++)
{

List<Net> childrenNets = getChildren(
parentPopulation.Nets[random.Next() % 50+50],
parentPopulation.Nets[random.Next() % 50+50]
);

childrenPopulationNets.AddRange(childrenNets);

}

for (int k = 0; k < childrenPopulationNets.Count; k++)

{

for (inti=0; i < childrenPopulationNets[k].w1.Count; i++)
{
for (int j = 0; j < childrenPopulationNets[k].w1[i].Count; j++)
{
int prob = random.Next(0, 1000);
if (prob ==777)
{
childrenPopulationNets[k].w1[i][j] = 2*random.NextDouble()+ 1;

}

for (int j = 0; j < childrenPopulationNets[k].w2.Count; j++)
{

int prob = random.Next(0, 1000);

if (prob ==777)

{

childrenPopulationNets[k].w2[j] = 2 * random.NextDouble() + 1;

}
//Sorting by fitness
for (inti=0; i< childrenPopulationNets.Count; i++)
{
for (int j = childrenPopulationNets.Count - 1; j > i; j--)
{
if (childrenPopulationNets[j].fitness < childrenPopulationNets[j - 1].fitness)
{
Net tempNet = childrenPopulationNets[j];
childrenPopulationNets[j] = childrenPopulationNets][j - 1];
childrenPopulationNets[j - 1] = tempNet;

}

Population childrenPopulation = new Population(childrenPopulationNets);
return childrenPopulation;

}

Boolean isReady(List<Population> historyOfPopulation)
{
if (historyOfPopulation[historyOfPopulation.Count - 1].theBestFitness == 32)
return true;
else
return false;
//if (historyOfPopulation.Count < 100)

// return false;

//else
/I
// for (int i = historyOfPopulation.Count - 100; i < historyOfPopulation.Count; i++)

/1A

if (historyOfPopulation[historyOfPopulation.Count - 100].avarageFitness !=
h|storyOfPopuIatlon[|Y avarageFitness)

// return false;
/] }
// returntrue;
//}
}
private List<Net> getChildren(Net father,Net mother)
{
List<Net> childrenNets = new List<Net>();
Random random = new Random();
List<Boolean> mask = new List<bool>();

List<List<double>> firstW1 = new List<List<double>>();

List<List<double>> secondW1 = new List<List<double>>();
List<double> firstW2 = new List<double>();

List<double> secondW2 = new List<double>();

for(int i=0;i<father.w1.Count;i++)

{

for(int j=0;j< father.w1[i].Count;j++)

{

}

List<double> firstTempW1 = new List<double>();
List<double> secondTempW1 = new List<double>();
if (random.Next() % 2 ==0)
{
firstTempW1.Add(father.w1[i][j]);
secondTempW1.Add(mother.w1[i][j]);
}

else
{
firstTempW1.Add(mother.w1[i][j]);
secondTempW1.Add(father.w1[i][j]);
}
father.w1.Add(firstTempW1);
mother.wl.Add(secondTempW1);

for (int j = 0; j < father.w2.Count; j++)

{

if (random.Next() % 2 == 0)

{

}

firstW2.Add(father.w2[j]);
secondW2.Add(mother.w2[j]);

else

{

firstW2.Add(mother.w2[j]);
secondW2.Add(father.w2[j]);

childrenNets.Add(new Net(firstW1,firstw2));
childrenNets.Add(new Net(secondW1,secondW2));

return childrenNets;

Net.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_kondrashuk

{

class Net
{
public List<cdouble> etalonInput2;
public List<cdouble> etalonResult2;
public List<List<double>> w1;
public List<double> w2;
public int fitness;
doublel,] etaloninput = new double[,]
{
{-1,-1,-1,-1,-1},
{-1,-1,-1,-1, 1},
{-1,-1,-1,1, -1},
{-1,-1,-1,1, 1},
{-1,-1,1, -1,-1},
{-1,-1,1, -1, 1},
{-1,-1,1, 1, -1},
{-1,-1,1, 1, 1},
{-1,1, -1,-1,-1},
{-1,1, -1,-1, 1},
{-1,1, -1,1, -1},
{-1,1, -1,1, 1},

{-1,1, 1, -1, -1},
{-1,1, 1, -1, 1},
{-1,1, 1, 1, -1},
{-1,1, 1, 1, 1},

{1,-1,-1,-1,-1},
{1,-1,-1,-1, 1},
{1,-1,-1,1, -1},
{1,-1,-1,1, 1},

{1,-1,1, -1,-1},
{1,-1,1, -1,1},
{1,-1,1, 1, -1},
{1,-1,1, 1, 1},
{1,1, -1,-1, -1},
{1,1, -1,-1,1},
{1,1, -1,1, -1},
{1,1, -1,1, 1},

{11 11 11 _11 _1}1
{11 11 11 _11 1}1
{11 11 11 11 _1}1
{1,1, 1, 1, 1}};
double[] etalonResult = new double[]
{1,0,0,1,0,1,1,0,0,1,1,0,1,0,0,1,0,1,1,0,1,0,0,1,1,0,0,1,0, 1, 1, 0};
public Net(List<List<double>> w1,List<double> w2)
{
this.wl =w1;
this.w2 = w2;
fitness = getFitness(w1,w2);
}
private int getFitness(List<List<double>> w1, List<double> w2)
{
int count =0;
for (int k = 0; k < 32; k++)
{
List<double> tempLayout = new List<double>();
for (inti=0; i< wl.Count; i++)
{
double tempWeight = 0;
for (intj=0;j<5; j++)
{
tempWeight += etalonlnput[k,i]* wi[i][j];
}
templayout.Add(tempWeight);

}
double final = 0;

for(int i=0;i<tempLayout.Count;i++)
{
final += templayout[i] * w2[i];
}
double afterActivation;
if (final > 0)
afterActivation=1;
else
afterActivation= - 1;
if (afterActivation == etalonResult[k])
count++;

}

return count;

Population.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_kondrashuk

{

class Population
{
public List<Net> Nets;
public int theBestFitness;
public int avarageFitness;
public Population(List<Net> Nets)
{
this.Nets = Nets;
theBestFitness = getTheBestFitness(Nets);
avarageFitness = getAvarageFitness(Nets);

}

public int getTheBestFitness(List<Net> Nets)

int bestFitness = 0;
for (inti=0; i< Nets.Count; i++)
if (bestFitness < Nets[i].fitness)
bestFitness = Nets[i].fitness;
return bestFitness;
}
public int getAvarageFitness(List<Net> Nets)
{
int avarageFitness = 0;
for (inti=0; i< Nets.Count; i++)
avarageFitness += Nets[i].fitness;
avarageFitness /= Nets.Count;

return avarageFitness;

Neural network model

weight

weight | value

wl 0,543

w2 0,765

w3 0,546

w4 0,901

w5 -0,801

w6 0,398

w7 0,702

w8 0,785

w9 0,904

w10 0,567

will 0,597

wil2 0,376

w13 -0,478

wlg -0,525

w15 0,692

w16 0,722

wi7 0,781

wis 0,521

w19 -0,341

w20 0,914

w2l 0,796

w22 -0,345

w23 -0,683

w24 -0,291

w25 0,365

w26 0,515

w27 -0,591

w28 -0,7914

w29 0,9032

w30 0,3813

Table of reference values

-1 -1 -1 -1 -1
-1 -1 -1 -1 1
-1 -1 -1 1 -1
-1 -1 -1 1 1
-1 -1 1 -1 -1
-1 -1 1 -1 1
-1 -1 1 1 -1
-1 -1 1 1 1
-1 1 -1 -1 -1

—F
hil]

T
48

i I,

44
32

35
29

26
27

10
23

1
19

iteration

fitness

