
Neural Network for Even-n-Parity

Code (C #) :

using System;
using System.Collections.Generic;
using System.Linq;

namespace ConsoleApplication1
{
 public class Network
 {
 private double[,] weight = new double[generation, genes];
 private const int genes = 30;
 private const int generation = 100;
 private int[,] y = new int[100, 32];
 int[,] p = new int[100, 32];
 private int[] fitness = new int[100];
 private int[] e = new int[]
 {
 -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1,1 -1, 1, 1, -1, -1, 1, 1, -1, 1,-1,-1, 1, 1
 };
 private int[,] inputs = new int [,] { { -1, -1, -1, -1, -1 },
 { -1, -1, -1, -1, 1 },
 { -1, -1, -1, 1, -1 },
 { -1, -1, -1, 1, 1 },

 { -1, -1, 1, -1, -1 },
 { -1, -1, 1, -1, 1 },
 { -1, -1, 1, 1, -1 },
 { -1, -1, 1, 1, 1 },

 { -1, 1, -1, -1, -1 },
 { -1, 1, -1, -1, 1 },
 { -1, 1, -1, 1, -1 },
 { -1, 1, -1, 1, 1 },

 { -1, 1, 1, -1, -1 },
 { -1, 1, 1, -1, 1 },
 { -1, 1, 1, 1, -1 },
 { -1, 1, 1, 1, 1 },

 { 1, -1, -1, -1, -1 },
 { 1, -1, -1, -1, 1 },
 { 1, -1, -1, 1, -1 },
 { 1, -1, -1, 1, 1 },

 { 1, -1, 1, -1, -1 },
 { 1, -1, 1, -1, 1 },
 { 1, -1, 1, 1, -1 },
 { 1, -1, 1, 1, 1 },

 { 1, 1, -1, -1, -1 },

 { 1, 1, -1, -1, 1 },
 { 1, 1, -1, 1, -1 },
 { 1, 1, -1, 1, 1 },

 { 1, 1, 1, -1, -1 },
 { 1, 1, 1, -1, 1 },
 { 1, 1, 1, 1, -1 },
 { 1, 1, 1, 1, 1 },
 };

 public Network()
 {
 Random rand = new Random();
 for (int i = 0; i < generation; i++)
 {
 for (int j = 0; j < genes; j++)
 {
 weight[i, j] = rand.Next(-1, 2) * rand.NextDouble();
 }
 }

 int count = 0;
 for (int i = 0; i < 100; i++)
 {
 count = 0;
 for (int j = 0; j < 32; j++)
 {
 y[i, j] = Calculate(j);
 if (y[i, j] == e[j])
 count++;
 }
 fitness[i] = count;
 }

 }

 public int Calculate(int h)
 {
 double result = 0;
 int[] res = new int[5];

 for (int i = 0; i < 5; i++)
 {
 result = 0;
 for (int j = 0; j < 30; j++)
 {
 result += inputs[h, i] * weight[i, j];
 }
 if (result >= 0)
 res[i] = 1;
 else
 res[i] = -1;
 }
 for (int i = 0; i < 5; i++)

 {
 result = 0;
 for (int j = 0; j < 30; j++)
 {
 result += res[i] * weight[i, j];
 }
 }
 int r = 0;
 if (result >= 0)
 r= 1;
 else
 r = -1;

 return r;
 }

 public void Cross()
 {
 int[] keys = new int[32];
 int[,] newPopulation = new int[100 / 2, 32];
 for (int i = 0; i < 32; i++)
 keys[i] = i;
 Array.Sort(fitness, keys);
 for (int i = 0; i < 100 / 2; i++)
 {
 for (int j = 0; j < 32; j++)
 {
 newPopulation[i, j] = y[keys[i], j];
 }
 }
 Random rand = new Random();
 for (int i = 0; i < 100; i++)
 {
 int a = rand.Next(0, 100/ 2);
 int b = rand.Next(0, 100 / 2);
 for (int j = 0; j < 32; j++)
 {
 p[0, j] = newPopulation[a, j];
 p[1, j] = newPopulation[b, j];
 }

 for (int j = 0; j < 32; j++)
 {
 int c = rand.Next(0, 2);
 if (c == 0)
 {
 y[i, j] = p[0, j];
 }
 else
 {
 y[i, j] = p[1, j];
 }
 }
 }

 }

 public int Get_fitness()
 {
 return fitness.Max();
 }

 public void Mutation()
 {
 Random rand = new Random();

 for (int i = 0; i < 100; i++)
 {
 for (int j = 0; j < 32; j++)
 {
 int value = rand.Next(0, 32);
 if (value == 0)
 {
 weight[i, j] = rand.Next(-1, 2) * rand.NextDouble();
 }
 }
 }

 int count = 0;
 for (int i = 0; i < 100; i++)
 {
 count = 0;
 for (int j = 0; j < 32; j++)
 {
 y[i, j] = Calculate(j);
 if (y[i, j] == inputs[i, j])
 count++;
 }
 fitness[i] = count;
 }
 }
 }
}

//**********************
using System;

namespace ConsoleApplication1
{
 class Program
 {
 public class Conditional
 {
 public static bool Condit(int max)
 {
 if (max == 32)
 {
 return false;

 }
 else
 return true;
 }
 }

 static void Main(string[] args)
 {
 Network nw = new Network();
 int max = nw.Get_fitness();
 while (Conditional.Condit(max))
 {
 nw.Cross();
 nw.Mutation();
 max = nw.Get_fitness();
 Console.WriteLine(max);
 }
 }
 }
}

