Neural Network for Even-n-Parity
Code (C #) :

using System;
using System.Collections.Generic;
using System.Ling;

namespace ConsoleApplication1
{
public class Network
{
private double[,] weight = new double[generation, genes];
private const int genes = 30;
private const int generation = 100;
private int[,] y = new int[100, 32];
int[,] p = new int[100, 32];
private int[] fitness = new int[100];
private int[] e = new int[]
{
-1,1,1,-1,1,-1,-1,1,1,-1,-1,1,-1,1,1,-1,1,-1,-1,1-1,1,1,-1,-1,1,1,-1,1,-1,-1, 1,1
2
private int[,] inputs =newint [,] {{-1, -1, -1, -1, -1},
{_11 _11 _11 _11 1 }I
{_11 _11 _11 1r -1 }I
{_11 _11 _11 11 1 }r

1'1 }I

7

~

PR PP

-1
-1,13,

1}
1}

~

’

I1I
1

~

{1,-1,-1
{1,-1,-1,-
{1,-1,-1
{1,-1,-1

{1,-1,1,-1,-1},
{1,-1,1,-1,1},
{1,-1,1,1,-1},
{1,-1,1,1,1},

{ 1’ 11 _1' _1l -1 }r

public Network()
{
Random rand = new Random();
for (inti = 0; i < generation; i++)
{
for (intj = 0; j < genes; j++)
{
weight(i, j] = rand.Next(-1, 2) * rand.NextDouble();
}
}

int count = 0;
for (inti=0;i<100; i++)
{

count=0;

for (intj=0;j<32;j++)

{

yli, j1 = Calculate(j);
if (y[i, 1 ==elj])
count++;

}

fitness[i] = count;

}

public int Calculate(int h)
{

double result = 0;

int[] res = new int[5];

for (inti=0;i<5;i++)
{
result = 0;
for (intj = 0; j < 30; j++)
{
result += inputs[h, i] * weight[i, j];
1
if (result >=0)
res[i] = 1;
else
res[i] =-1;
}

for (inti=0;i<05;i++)

{
result = 0;
for (int j = 0; j < 30; j++)
{
result += res[i] * weight[i, j];
}
}
intr=0;
if (result >=0)

returnr;

}

public void Cross()
{
int[] keys = new int[32];
int[,] newPopulation = new int[100/ 2, 32];
for (inti=0;i<32;i++)
keysli] =i;
Array.Sort(fitness, keys);
for (inti=0;i<100/ 2; i++)
{
for (intj=0;j<32;j++)
{
newPopulationli, j] = y[keysli], j];
}
}

Random rand = new Random();
for (inti=0;i<100; i++)
{
int a = rand.Next(0, 100/ 2);
int b = rand.Next(0, 100 / 2);
for (intj=0;j<32; j++)
{
p[0, j] = newPopulation(a, j];
p[1, j] = newPopulation[b, jl;

!
for (intj=0;j<32; j++)
{
int c = rand.Next(0, 2);
if (c==0)
{
yli, jl = pI[0, jI;
}
else
{
yli, jl=pl[1, jI;
}
!

}

}

public int Get_fitness()
{

return fitness.Max();

}

public void Mutation()
{

Random rand = new Random();

for (inti=0;i<100; i++)
{
for (intj=0;j<32; j++)
{
int value = rand.Next(0, 32);
if (value == 0)
{
weight[i, j] = rand.Next(-1, 2) * rand.NextDouble();
}
}
}

int count = 0;
for (inti=0;i<100; i++)
{
count=0;
for (intj=0;j<32;j++)
{
yli, j1 = Calculate(j);
if (y[i, j == inputs(i, j])
count++;

}

fitness[i] = count;

//**********************

using System;

namespace ConsoleApplicationl

{

class Program

{

public class Conditional

{

public static bool Condit(int max)

{
if (max == 32)
{

return false;

}

else
return true;
}
}

static void Main(string[] args)
{
Network nw = new Network();
int max = nw.Get_fitness();
while (Conditional.Condit(max))
{
nw.Cross();
nw.Mutation();
max = nw.Get_fitness();
Console.WriteLine(max);

=
b

=
I

=
LaX]

=
=

=
[N;]

ol o b b o b o b e b b b L
e [[L e [e [e | L | | | | | | [| [f e [[[e [[[[e |

[[
B [[L e [e [e | e | | | | | | [| [f e [[[e e [[[e |

T O T O T O T O
e [[e L [e [e | e | | | | | | [| [f e [[[e e [[[e |

]]]]]]]]
o o o | o [| [| | | | | | | | b b b e o o [o [| [[[[|

i i i i i i i i i i i i i i i i
[[o | o [| [| | | | | | | | | b b b e o o [o [| [[[[|

i i i i i | i i i | i i i
b [h [o [| [| b [| | | | | | | | | e b | b | | b b o [b e | e | [

I
wl 0,45553
wd 0,32654
W 0,45738
wd -0,43941
w5 -0,09348
whb -0,32895
wr -0,30501
wa -0,12658
wa 0,24123

wll 0,52245
wll -0,21457
wlz -0,72556
wl3 0,10569
wild -0,94342
wl5 -0,21546
wlb 0,86668
wl7 -0,90866
wlB 0,74833
wls 0,17638
w20 -0,25267
wil -0,53186
w2l -0,09348
w23 -0, 74685
wad 0,19476
w5 0,42447
wlb -0,89457

41

32

30
30

20
28

10
24

Generation |

20

Fithess

