Golodko Lab-3

Source Code

GA.cs
using
using
using
using
using

using

System;

System.Collections.Generic;

System.Ling;

System.Text;

System.Threading;

System.Threading.Tasks;

namespace lab3 siit golodko

{

class GA

{

Random random;

List<Population> historyOfPopulation;

public GA()

{

random

new Random () ;

List<Net> Nets = new List<Net>();

for(int i=0;1<100;i++)

{

List<List<double>> wl = new
List<List<double>> () ;

List<double> w2 = new List<double>():;

for (int 3=0;73<5;J++)

{

w2 .Add (2 * random.NextDouble() - 1);
List<double> tempWl = new List<double>();
for (int t = 0; t < 5; t++)

tempWl.Add (2 * random.NextDouble () -

wl.Add (tempWl) ;

1),



}
Nets.Add (new Net (wl,w2));

}

Population startPopulation = new Population (Nets);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add (startPopulation);

int k = 0;

while (historyOfPopulation[k].theBestFitness!=32)

{
Thread.Sleep (10);

historyOfPopulation.Add (getNextPupulation (historyOfPopulation[k]
));
k++;

}
private List<Net> population;
private Population getNextPupulation (Population

parentPopulation)

{
List<Net> childrenPopulationNets = new List<Net>();

for (int 1=0;1i<50;i++)

{
List<Net> childrenNets = getChildren (

)

parentPopulation.Nets[random.Next () %
50+507],

)

parentPopulation.Nets[random.Next () % 50+50]

) 7
childrenPopulationNets.AddRange (childrenNets) ;
}

for (int k = 0; k < childrenPopulationNets.Count;
k++)



for (int 1 = 0; i <
childrenPopulationNets[k].wl.Count; i++)

{

for (int 7 = 0; j <
childrenPopulationNets[k].wl[i].Count; j++)

{
int prob = random.Next (0, 1000);
if (prob == 777)
{

childrenPopulationNets[k].wl[i][]J] =
2*random.NextDouble () + 1;

}

}

for (int j = 0; j <
childrenPopulationNets[k].w2.Count; j++)

{
int prob = random.Next (0, 1000);
if (prob == 777)
{

childrenPopulationNets[k].w2[j] = 2 *
random.NextDouble () + 1;

}

}
//Sorting by fitness

for (int i = 0; i1 < childrenPopulationNets.Count;
i++)

for (int 7 = childrenPopulationNets.Count - 1; j

if (childrenPopulationNets[j].fitness <
childrenPopulationNets[]j - 1].fitness)



Net tempNet = childrenPopulationNets[]];

childrenPopulationNets[]j] =
childrenPopulationNets[]j - 11];

childrenPopulationNets[j - 1] = tempNet;

}

Population childrenPopulation = new
Population (childrenPopulationNets) ;

return childrenPopulation;
}
Boolean isReady(List<Population> historyOfPopulation)
{

if (historyOfPopulation[historyOfPopulation.Count -
1] .theBestFitness == 32)

return true;
else
return false;

//if (historyOfPopulation.Count < 100)

// return false;

//else

//{

// for (int i = historyOfPopulation.Count - 100;
i < historyOfPopulation.Count; i++)

// {

// if
(historyOfPopulation[historyOfPopulation.Count -
100] .avarageFitness != historyOfPopulation[i].avarageFitness)

// return false;

// }

// return true;

//}



private List<Net> getChildren (Net father,Net mother)
{
List<Net> childrenNets = new List<Net> () ;
Random random = new Random() ;
List<Boolean> mask = new List<bool>():;

List<List<double>> firstWl = new
List<List<double>> () ;

List<List<double>> secondWl = new
List<List<double>> () :;

List<double> firstW2 = new List<double>();
List<double> secondW2 = new List<double>();
for (int 1=0;i<father.wl.Count;i++)
{
for(int j=0;j< father.wl[i].Count;j++)
{

List<double> firstTempWl = new
List<double> () ;

List<double> secondTempWl = new
List<double> () ;

if (random.Next () % 2 == 0)
{
firstTempWl.Add (father.wl[i][3])

secondTempWl .Add (mother.wl[i][]]);

else

firstTempWl.Add (mother.wl[i][]])
secondTempWl .Add (father.wl[i][]])
}
father.wl.Add (firstTempWl) ;

mother.wl.Add (secondTempWl) ;



for (int j = 0; j < father.w2.Count; J++)
{
if (random.Next () % 2 == 0)
{
firstW2.Add (father.w2([]j]);

secondW?2 .Add (mother.w2[j]);

else

firstW2.Add (mother.w2[]j]);

secondW2.Add (father.w2[7j]);

childrenNets.Add (new Net (firstWl, firstW2));
childrenNets.Add (new Net (secondWl, secondW2)) ;

return childrenNets;

Net.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit golodko

{

class Net



public List<double> etalonInput?2;
public List<double> etalonResult2;
public List<List<double>> wl;
public List<double> w2;

public int fitness;

double[,] etalonlInput = new doublel, ]

{-1, -1, -1, -1, -1 1},
{-1, -1, -1, -1, 1},
{-1, -1, -1, 1, -1},
{-1, -1, -1, 1, 1},
{-1, -1, 1, -1, -1},
{-1, -1, 1, -1, 1},
{-1, -1, 1, 1, -1},
{-1, -1, 1, 1, 1},
{-1, 1, -1, -1, -1},
{-1, 1, -1, -1, 1},
{-1, 1, -1, 1, -1},
{-1, 1, -1, 1, 1},
{-1, 1, 1, -1, -1},
{-1, 1, 1, -1, 1},
{-1, 1, 1, 1, -1},
{-1, 1, 1, 1, 1},
{1, -1, -1, -1, -1},
{1, -1, -1, -1, 1},
{1, -1, -1, 1, -1},
{1, -1, -1, 1, 1},
{1, -1, 1, -1, -1},
{1, -1, 1, -1, 1},
{1, -1, 1, 1, -1},

{lr _lr 1/ 1/ l}r



{1, 1, -1, -1, -1},
(1, 1, -1, -1, 1},
{1, 1, -1, 1, -1},
(1, 1, -1, 1, 1},
{1, 1, 1, -1, -1},
(1, 1, 1, -1, 1},
{1, 1, 1, 1, -1},
(1, 1, 1, 1, 1}};

double[] etalonResult = new double]]

1 0, 1, 0, 0, 2, 1, O, O, 1, O, 1, 1, O};
public Net (List<List<double>> wl,List<double> w2)

{

this.wl = wl;
this.w2 = w2;
fitness = getFitness(wl,w2);

}

private int getFitness (List<List<double>> wl,
List<double> w2)

{
int count = 0;
for (int k = 0; k < 32; k++)
{
List<double> templLayout = new List<double>();
for (int i = 0; i1 < wl.Count; i++)
{
double tempWeight = 0;
for (int 7 = 0; J < 5; Jj++)
{

tempWeight += etalonInputl(k,i]*
wl[il[31;

}

templLayout.Add (tempWeight) ;



}
double final = 0;
for (int i=0; i<tempLayout.Count;i++)
{
final += tempLayout[i] * w2[i];
}
double afterActivation;
if (final > 0)

afterActivation= 1;

else
afterActivation= - 1;

if (afterActivation == etalonResult[k])
count++;

}

return count;

Population.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit golodko

{

class Population

{



public List<Net> Nets;
public int theBestFitness;
public int avarageFitness;
public Population (List<Net> Nets)
{
this.Nets = Nets;
theBestFitness = getTheBestFitness (Nets) ;

avarageFitness = getAvarageFitness (Nets);

}
public int getTheBestFitness (List<Net> Nets)
{
int bestFitness = 0;
for (int i = 0; i < Nets.Count; i++)
if (bestFitness < Nets[i].fitness)
bestFitness = Nets[i].fitness;
return bestFitness;
}
public int getAvarageFitness (List<Net> Nets)
{
int avarageFitness = 0;
for (int i = 0; i < Nets.Count; i++)
avarageFitness += Nets[i].fitness;
avarageFitness /= Nets.Count;

return avarageFitness;

Graphic



T
38

T
36

T
34

3

T
30

T
28

20

T
13

T
16

T
14

T
12

T
10

ERR o

304

paR o

201

104

Etalon




1)

Point 1

Fitness-20




2)

point 8 fitness 22

3)

point 17, fitness-26




4)

Point 25. Fitness 28




5) point 38, fitness 32




Neural Network



weight | value

wl 0,6234
w2 0,823
w3 0,523
w4 0,89
w5 -0,78
w6 0,345
w7 0,696
w8 0,759
w9 0,897
w10 0,54
wll 0,578
w12 0,345
w13 -0,45
wl4 -0,509




w15 0,678
w16 0,701
wil7 0,768
wi8 0,456
w19 -0,298
w20 0,897
w2l 0,765
w22 -0,298
w23 -0,643
w24 -0,256
w25 0,345
w26 0,504
w27 -0,4245
w28 -0,7896
w29 0,8754
w30 0,3985




