3-Ilya Babich
Neural network

raferance values

Neural Network model:




waight value wl6 0,047
wl 0,632 wil7 0,799
w2 0,954 wil8 0,385
w3 0,611 w19 -0,222
wi 0,908 w20 0,855
w5 -0,922 w21l 0,847
w6 0,427 w22 -0,214
w7 0,7989 w23 -0,674
w8 0,788 w24 -0,214
w9 0,91 w25 0,347
w10 0,648 w26 0,5771
will 0,759 w27 -0,511
wl2 0,586 w28 -0,732
wil3 -0,505 w29 0,745
wil4 -0,814 w30 0,856
w15 0,726
ol ;itness ==
generation
generation 1 10 21 30 47
fitness 14 19 25 27 32
1 1 1 1
-1 -1 -1 -1
-1 -1 -1 -1 -1
1 1 1 1
-1 -1 -1 -1
-1 1 1 1 1
-1 1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 1 1
-1 1 -1




-1 -1 -1 -1 -1
1 1 1 1 1
-1 -1 -1 -1 -1
-1 -1 -1 -1 -1
-1 1 -1 1 1
1 -1 -1 -1 -1
-1 1 -1
1 1 1
-1 -1 -1 -1 -1
-1 1 1 1 1
1 -1 -1 -1 -1
-1 -1 -1 -1 -1
1 1
1

-1 -1 -1

-1 -1 -1 -1
-1 1 -1 1 1
-1 -1 -1 -1 -1
-1 1 -1
-1 1 1
1 -1 -1 -1 -1

Source code:
namespace lab3 siit babich
{
class GA
{
Random random;
List<Pop> histPop;
public GA()
{
random = new Random() ;
List<Net> Nets = new List<Net>();
for (int i=0;i<100;i++)
{
List<List<double>> wl = new List<List<double>>();
List<double> w2 = new List<double>();
for (int j=0;3<5;j++)
{
w2 .Add (2 * random.NextDouble () - 1);
List<double> tempWl = new List<double>();
for (int t = 0; t < 5; t++)
tempWl.Add (2 * random.NextDouble() - 1);

wl.Add (tempWl) ;

}

Nets.Add (new Net (wl,w2));



}

Pop startPop = new Pop (Nets);
histPop = new List<Pop>();
histPop.Add (startPop) ;
int k = 0;
while (histPop[k].theBestFitness!=32)
{
Thread.Sleep(10);
histPop.Add (getNext (histPop([k]));

k++;

private List<Net> Pop;

private Pop getNext (Pop parentPop)

{

List<Net> childrenPopNets = new List<Net>();

for (int 1=0;1<50;i++)
{

List<Net> childrenNets = getChildren (
parentPop.Nets[random.Next () % 50+50],
parentPop.Nets[random.Next () % 50+50]

)i
childrenPopNets.AddRange (childrenNets) ;
}
for (int k = 0; k < childrenPopNets.Count; k++)
{

for (int i = 0; 1 < childrenPopNets[k].wl.Count; i++)

{
for (int j = 0; j < childrenPopNets[k].wl[i].Count; Jj++)
{

int prob = random.Next (0, 1000);
if (prob == 777)
{

childrenPopNets[k].wl[i][]J] = 2*random.NextDouble ()+

}
for (int j = 0; j < childrenPopNets[k].w2.Count; Jj++)
{

int prob = random.Next (0, 1000);

if (prob == 777)

{

1;



childrenPopNets[k] .w2[]j] = 2 * random.NextDouble() + 1;

}
//Sorting by fitness
for (int 1 = 0; i < childrenPopNets.Count; i++)
{
for (int j = childrenPopNets.Count - 1; j > i; j--)
{
if (childrenPopNets[j].fitness < childrenPopNets[j - 1].fitness)
{
Net tempNet = childrenPopNets[j];
childrenPopNets[j] = childrenPopNets[]j - 1];

childrenPopNets[j - 1] = tempNet;

}
Pop childrenPop = new Pop (childrenPopNets) ;
return childrenPop;
}
Boolean isReady (List<Pop> histPop)
{
if (histPop[histPop.Count - 1].theBestFitness == 32)
return true;
else
return false;

//1if (histPop.Count < 100)

// return false;

//else

A

// for (int i = histPop.Count - 100; i < histPop.Count; i++)
// {

// if (histPop[histPop.Count - 100].avarageFitness !=

histPopl[i].avarageFitness)

// return false;
/7 }

// return true;

//}

}
private List<Net> getChildren (Net father,Net mother)
{

List<Net> childrenNets = new List<Net> ()

Random random = new Random() ;



List<Boolean> mask = new List<bool>();
List<List<double>> firstWl = new List<List<double>>():;
List<List<double>> secondWl = new List<List<double>>();
List<double> firstW2 = new List<double>();

List<double> secondW2 = new List<double>();
for (int i=0;i<father.wl.Count;i++)
{

for (int j=0;3j< father.wl[i].Count;j++)

{

List<double> firstTempWl = new List<double>();
List<double> secondTempWl = new List<double>();
if (random.Next () % 2 == 0)
{

firstTempWl.Add (father.wl[i][]]);

secondTempWl .Add (mother.wl[i] [J])

else

firstTempWl.Add (mother.wl[i] [J]);
secondTempWl .Add (father.wl[i][J])
}
father.wl.Add (firstTempWl) ;

mother.wl.Add (secondTempWl) ;

}
for (int j = 0; j < father.w2.Count; Jj++)
{
if (random.Next () % 2 == 0)
{
firstW2.Add (father.w2[3]);

secondW2.Add (mother.w2[j]);

else

firstW2.Add (mother.w2[3]);

secondW2.Add (father.w2[j]);

childrenNets.Add (new Net (firstWl, firstw2));
childrenNets.Add (new Net (secondWl, secondW2)) ;

return childrenNets;



Net.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit babich
{
class Net
{
public List<double> etalonInput2;
public List<double> etalonResult2;
public List<List<double>> wl;
public List<double> w2;
public int fitness;

double[,] etalonInput = new doublel, ]



{1, -1,
{1, -1,
{1, -1,
{1, -1,
{1, -1,
{1, 1,
{1, 1,
{1, 1,
{1, 1,
{1, 1,
{1, 1,
{1, 1,
{1, 1,

double [

-1, 1, 1},
i, -1, -1},
i, -1, 1},
i, 1, -1},
i, 1, 13},

-1, -1, -1},

_ll _ll l}l
_ll lr _l}l
_ll lr l}l

i, -1, -1},
i, -1, 1},

i, 1, -1},
1, 1, 11}};

] etalonResult = new double[]

0};

public Net (List<List<double>> wl,List<double> w2)

{

this.wl = wl;
this.w2 = w2;
fitness = getFitness (wl,w2);
}
private int getFitness (List<List<double>> wl, List<double> w2)

int

for

count = 0;

(int k = 0; k < 32; k++)

List<double> tempLayout = new List<double>();
for (int 1 = 0; 1 < wl.Count; i++)
{
double tempWeight = 0;
for (int j = 0; j < 5; j++)
{
tempWeight += etalonInput(k,i]* wl[i]l[]J];
}
tempLayout.Add (tempWeight) ;
}
double final = 0;
for (int i=0;i<tempLayout.Count;i++)
{
final += templayout[i] * w2[i];
}

double afterActivation;



if (final > 0)

afterActivation= 1;

else
afterActivation= - 1;

if (afterActivation == etalonResult[k])
count++;

}

return count;

Pop.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit babich
{
class Pop
{
public List<Net> Nets;
public int theBestFitness;
public int avarageFitness;

public Pop (List<Net> Nets)

this.Nets = Nets;
theBestFitness = getTheBestFitness (Nets) ;
avarageFitness = getAvarageFitness (Nets) ;
}
public int getTheBestFitness (List<Net> Nets)
{
int bestFitness = 0;
for (int i = 0; 1 < Nets.Count; i++)
if (bestFitness < Nets[i].fitness)
bestFitness = Nets[i].fitness;

return bestFitness;



public int getAvarageFitness (List<Net> Nets)

{

int avarageFitness = 0;

for (int i = 0; 1 < Nets.Count; i++)
avarageFitness += Nets[i].fitness;

avarageFitness /= Nets.Count;

return avarageFitness;



