
3-Ilya Babich
Neural network

raferance values

-1 -1 -1 -1 -1 1
-1 -1 -1 -1 1 -1
-1 -1 -1 1 -1 -1
-1 -1 -1 1 1 1
-1 -1 1 -1 -1 -1
-1 -1 1 -1 1 1
-1 -1 1 1 -1 1
-1 -1 1 1 1 -1
-1 1 -1 -1 -1 -1
-1 1 -1 -1 1 1
-1 1 -1 1 -1 1
-1 1 -1 1 1 -1
-1 1 1 -1 -1 1
-1 1 1 -1 1 -1
-1 1 1 1 -1 -1
-1 1 1 1 1 1
1 -1 -1 -1 -1 -1
1 -1 -1 -1 1 1
1 -1 -1 1 -1 1
1 -1 -1 1 1 -1
1 -1 1 -1 -1 1
1 -1 1 -1 1 -1
1 -1 1 1 -1 -1
1 -1 1 1 1 1
1 1 -1 -1 -1 1
1 1 -1 -1 1 -1
1 1 -1 1 -1 -1
1 1 -1 1 1 1
1 1 1 -1 -1 -1
1 1 1 -1 1 1
1 1 1 1 -1 1

1 1 1 1 1 -1

Neural Network model:

w26 w27 w28 w29 w30

w1 w25
w2

w3 w5 W21
w22

w23w24
w4

waight value

w1 0,632

w2 0,954

w3 0,611

w4 0,908

w5 -0,922

w6 0,427

w7 0,7989

w8 0,788

w9 0,91

w10 0,648

w11 0,759

w12 0,586

w13 -0,505

w14 -0,814

w15 0,726

w16 0,047

w17 0,799

w18 0,385

w19 -0,222

w20 0,855

w21 0,847

w22 -0,214

w23 -0,674

w24 -0,214

w25 0,347

w26 0,5771

w27 -0,511

w28 -0,732

w29 0,745

w30 0,856

generation 1 10 21 30 47

fitness 14 19 25 27 32

 1 1 1 1 1

 1 -1 -1 -1 -1

 -1 -1 -1 -1 -1

 1 1 1 1 1

 1 -1 -1 -1 -1

 -1 1 1 1 1

 -1 1 1 1 1

 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1

 -1 1 1 1 1

 -1 1 -1 1 1

 -1 -1 -1 -1 -1

 1 1 1 1 1

 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1

 -1 1 -1 1 1

 1 -1 -1 -1 -1

 -1 1 -1 1 1

 1 1 1 1 1

 -1 -1 -1 -1 -1

 -1 1 1 1 1

 1 -1 -1 -1 -1

 -1 -1 -1 -1 -1

 1 1 1 1 1

 1 1 1 1 1

 1 -1 1 -1 -1

 1 -1 -1 -1 -1

 -1 1 -1 1 1

 -1 -1 -1 -1 -1

 -1 1 -1 1 1

 -1 1 1 1 1

 1 -1 -1 -1 -1

Source code:

namespace lab3_siit_babich

{

 class GA

 {

 Random random;

 List<Pop> histPop;

 public GA()

 {

 random = new Random();

 List<Net> Nets = new List<Net>();

 for(int i=0;i<100;i++)

 {

 List<List<double>> w1 = new List<List<double>>();

 List<double> w2 = new List<double>();

 for(int j=0;j<5;j++)

 {

 w2.Add(2 * random.NextDouble() - 1);

 List<double> tempW1 = new List<double>();

 for (int t = 0; t < 5; t++)

 tempW1.Add(2 * random.NextDouble() - 1);

 w1.Add(tempW1);

 }

 Nets.Add(new Net(w1,w2));

 }

 Pop startPop = new Pop(Nets);

 histPop = new List<Pop>();

 histPop.Add(startPop);

 int k = 0;

 while(histPop[k].theBestFitness!=32)

 {

 Thread.Sleep(10);

 histPop.Add(getNext(histPop[k]));

 k++;

 }

 }

 private List<Net> Pop;

 private Pop getNext(Pop parentPop)

 {

 List<Net> childrenPopNets = new List<Net>();

 for (int i=0;i<50;i++)

 {

 List<Net> childrenNets = getChildren(

 parentPop.Nets[random.Next() % 50+50],

 parentPop.Nets[random.Next() % 50+50]

);

 childrenPopNets.AddRange(childrenNets);

 }

 for (int k = 0; k < childrenPopNets.Count; k++)

 {

 for (int i = 0; i < childrenPopNets[k].w1.Count; i++)

 {

 for (int j = 0; j < childrenPopNets[k].w1[i].Count; j++)

 {

 int prob = random.Next(0, 1000);

 if (prob == 777)

 {

 childrenPopNets[k].w1[i][j] = 2*random.NextDouble()+ 1;

 }

 }

 }

 for (int j = 0; j < childrenPopNets[k].w2.Count; j++)

 {

 int prob = random.Next(0, 1000);

 if (prob == 777)

 {

 childrenPopNets[k].w2[j] = 2 * random.NextDouble() + 1;

 }

 }

 }

 //Sorting by fitness

 for (int i = 0; i < childrenPopNets.Count; i++)

 {

 for (int j = childrenPopNets.Count - 1; j > i; j--)

 {

 if (childrenPopNets[j].fitness < childrenPopNets[j - 1].fitness)

 {

 Net tempNet = childrenPopNets[j];

 childrenPopNets[j] = childrenPopNets[j - 1];

 childrenPopNets[j - 1] = tempNet;

 }

 }

 }

 Pop childrenPop = new Pop(childrenPopNets);

 return childrenPop;

 }

 Boolean isReady(List<Pop> histPop)

 {

 if (histPop[histPop.Count - 1].theBestFitness == 32)

 return true;

 else

 return false;

 //if (histPop.Count < 100)

 // return false;

 //else

 //{

 // for (int i = histPop.Count - 100; i < histPop.Count; i++)

 // {

 // if (histPop[histPop.Count - 100].avarageFitness !=

histPop[i].avarageFitness)

 // return false;

 // }

 // return true;

 //}

 }

 private List<Net> getChildren(Net father,Net mother)

 {

 List<Net> childrenNets = new List<Net>();

 Random random = new Random();

 List<Boolean> mask = new List<bool>();

 List<List<double>> firstW1 = new List<List<double>>();

 List<List<double>> secondW1 = new List<List<double>>();

 List<double> firstW2 = new List<double>();

 List<double> secondW2 = new List<double>();

 for(int i=0;i<father.w1.Count;i++)

 {

 for(int j=0;j< father.w1[i].Count;j++)

 {

 List<double> firstTempW1 = new List<double>();

 List<double> secondTempW1 = new List<double>();

 if (random.Next() % 2 == 0)

 {

 firstTempW1.Add(father.w1[i][j]);

 secondTempW1.Add(mother.w1[i][j]);

 }

 else

 {

 firstTempW1.Add(mother.w1[i][j]);

 secondTempW1.Add(father.w1[i][j]);

 }

 father.w1.Add(firstTempW1);

 mother.w1.Add(secondTempW1);

 }

 }

 for (int j = 0; j < father.w2.Count; j++)

 {

 if (random.Next() % 2 == 0)

 {

 firstW2.Add(father.w2[j]);

 secondW2.Add(mother.w2[j]);

 }

 else

 {

 firstW2.Add(mother.w2[j]);

 secondW2.Add(father.w2[j]);

 }

 }

 childrenNets.Add(new Net(firstW1,firstW2));

 childrenNets.Add(new Net(secondW1,secondW2));

 return childrenNets;

 }

 }

}

Net.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_babich

{

 class Net

 {

 public List<double> etalonInput2;

 public List<double> etalonResult2;

 public List<List<double>> w1;

 public List<double> w2;

 public int fitness;

 double[,] etalonInput = new double[,]

 {

 {-1, -1, -1, -1, -1 },

 {-1, -1, -1, -1, 1},

 {-1, -1, -1, 1, -1},

 {-1, -1, -1, 1, 1},

 {-1, -1, 1, -1, -1},

 {-1, -1, 1, -1, 1},

 {-1, -1, 1, 1, -1},

 {-1, -1, 1, 1, 1},

 {-1, 1, -1, -1, -1},

 {-1, 1, -1, -1, 1},

 {-1, 1, -1, 1, -1},

 {-1, 1, -1, 1, 1},

 {-1, 1, 1, -1, -1},

 {-1, 1, 1, -1, 1},

 {-1, 1, 1, 1, -1},

 {-1, 1, 1, 1, 1},

 {1, -1, -1, -1, -1},

 {1, -1, -1, -1, 1},

 {1, -1, -1, 1, -1},

 {1, -1, -1, 1, 1},

 {1, -1, 1, -1, -1},

 {1, -1, 1, -1, 1},

 {1, -1, 1, 1, -1},

 {1, -1, 1, 1, 1},

 {1, 1, -1, -1, -1},

 {1, 1, -1, -1, 1},

 {1, 1, -1, 1, -1},

 {1, 1, -1, 1, 1},

 {1, 1, 1, -1, -1},

 {1, 1, 1, -1, 1},

 {1, 1, 1, 1, -1},

 {1, 1, 1, 1, 1}};

 double[] etalonResult = new double[]

 {1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0,

0, 1, 0, 1, 1, 0};

 public Net(List<List<double>> w1,List<double> w2)

 {

 this.w1 = w1;

 this.w2 = w2;

 fitness = getFitness(w1,w2);

 }

 private int getFitness(List<List<double>> w1, List<double> w2)

 {

 int count = 0;

 for (int k = 0; k < 32; k++)

 {

 List<double> tempLayout = new List<double>();

 for (int i = 0; i < w1.Count; i++)

 {

 double tempWeight = 0;

 for (int j = 0; j < 5; j++)

 {

 tempWeight += etalonInput[k,i]* w1[i][j];

 }

 tempLayout.Add(tempWeight);

 }

 double final = 0;

 for(int i=0;i<tempLayout.Count;i++)

 {

 final += tempLayout[i] * w2[i];

 }

 double afterActivation;

 if (final > 0)

 afterActivation= 1;

 else

 afterActivation= - 1;

 if (afterActivation == etalonResult[k])

 count++;

 }

 return count;

 }

 }

}

Pop.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_babich

{

 class Pop

 {

 public List<Net> Nets;

 public int theBestFitness;

 public int avarageFitness;

 public Pop(List<Net> Nets)

 {

 this.Nets = Nets;

 theBestFitness = getTheBestFitness(Nets);

 avarageFitness = getAvarageFitness(Nets);

 }

 public int getTheBestFitness(List<Net> Nets)

 {

 int bestFitness = 0;

 for (int i = 0; i < Nets.Count; i++)

 if (bestFitness < Nets[i].fitness)

 bestFitness = Nets[i].fitness;

 return bestFitness;

 }

 public int getAvarageFitness(List<Net> Nets)

 {

 int avarageFitness = 0;

 for (int i = 0; i < Nets.Count; i++)

 avarageFitness += Nets[i].fitness;

 avarageFitness /= Nets.Count;

 return avarageFitness;

 }

 }

}

