KIRILL ZABRODSKY I11-11 LAB-3 SIT
Source code:

GA.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3 siit kirill ii 11
{
class GA
{
Random random;
List<Population> historyOfPopulation;
public GA()
{
random = new Random() ;
List<Net> Nets = new List<Net>();
for(int i=0;1<100;1i++)
{
List<List<double>> wl = new List<List<double>>();
List<double> w2 = new List<double> () ;
for (int j=0;j<5;3++)
{
w2 .Add (2 * random.NextDouble () - 1);
List<double> tempWl = new List<double>():;
for (int t = 0; t < 5; t++)
tempWl.Add (2 * random.NextDouble() - 1);
wl.Add (tempWl) ;

}
Nets.Add (new Net (wl,w2));

}

Population startPopulation = new Population (Nets);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add (startPopulation) ;

int k = 0;

while (historyOfPopulation[k].theBestFitness!=32)

{
Thread.Sleep (10);

historyOfPopulation.Add (getNextPupulation (historyOfPopulationlk]));



KIRILL ZABRODSKY II-11 LAB-3 SIIT

k++;

}
private List<Net> population;

private Population getNextPupulation (Population
parentPopulation)

{
List<Net> childrenPopulationNets = new List<Net>();

for (int 1=0;1i<50;1i++)
{

List<Net> childrenNets = getChildren
parentPopulation.Nets[random.Next () % 50+50],
parentPopulation.Nets[random.Next () % 50+50]

) 7
childrenPopulationNets.AddRange (childrenNets) ;
}
for (int k = 0; k < childrenPopulationNets.Count; k++)
{

for (int i = 0; 1 <
childrenPopulationNets[k].wl.Count; i++)

{

‘ . for (int j = 0; 7 <
childrenPopulationNets[k].wl[1].Count; J++)

{
int prob = random.Next (0, 1000);
if (prob == 777)
{

childrenPopulationNets[k] .wl[i][]] =
2*random.NextDouble () + 1;

}

}

for (int 7 = 0; J <
childrenPopulationNets[k].w2.Count; j++)

{

int prob = random.Next (0, 1000);
if (prob == 777)
{
childrenPopulationNets[k].w2[]j] = 2 *
random.NextDouble () + 1;

}

}
//Sorting by fitness

for (int i = 0; i < childrenPopulationNets.Count; i++)



KIRILL ZABRODSKY II-11 LAB-3 SIIT

- for (int j = childrenPopulationNets.Count - 1; j > 1i;
j--

if (childrenPopulationNets[j].fitness <
childrenPopulationNets[]j - 1].fitness)

{
Net tempNet = childrenPopulationNets([j];

childrenPopulationNets[]] =
childrenPopulationNets[]j - 1];

childrenPopulationNets[]j - 1] = tempNet;

}

Pogulation childrenPopulation = new
Population (chi drenPopulationNets?;

return childrenPopulation;
}
Boolean isReady (List<Population> historyOfPopulation)
{

if (historgOfPopulation[historyOfPopulation.Count -
1] .theBestFitness == 32)

return true;
else
return false;
//1if (historyOfPopulation.Count < 100)
// return false;
//else
/74

// for (int i1 = historyOfPopulation.Count - 100; 1 <
historyOfPopulation.Count; i++)

// {

// if
(historyOfPopulationf[historyOfPopulation.Count - 100].avarageFitness
'= historyOfPopulation[i].avarageFitness)

// return false;
// }

// return true;

/7}

}
private List<Net> getChildren (Net father,Net mother)
{
List<Net> childrenNets = new List<Net> ()
Random random = new Random() ;
List<Boolean> mask = new List<bool>();
List<List<double>> firstWl = new List<List<double>>();
List<List<double>> secondWl = new List<List<double>>();



KIRILL ZABRODSKY II-11 LAB-3 SIIT

List<double> firstW2 = new List<double> () ;
List<double> secondW2 = new List<double> () ;
for(int i=0;i<father.wl.Count;i++)
{
for (int j=0;j< father.wl[i].Count;j++)
{
List<double> firstTempWl = new List<double>();
List<double> secondTempWl = new List<double>():;
if (random.Next () % 2 == 0)
{
firstTempWl.Add (father.wl[i][]j]);
secondTempWl .Add (mother.wl[i] []])
}
else
{
firstTempWl.Add (mother.wl[i][3]);
secondTempWl .Add (father.wl[i][]])
}
father.wl.Add (firstTempWl) ;
mother.wl.Add (secondTempWl) ;

}
for (int j = 0; j < father.w2.Count; j++)
{
if (random.Next () % 2 == 0)
{
firstW2.Add (father.w2[j]);
secondW2 .Add (mother.w2[J]);

else

firstW2.Add (mother.w2[j]);
secondW2.Add (father.w2[j]);

childrenNets.Add (new Net (firstWl, firstw2));
childrenNets.Add (new Net (secondWl, secondW2)) ;

return childrenNets;

}
Net.cs

using System;



KIRILL ZABRODSKY II-11 LAB-3 SIIT

using System.Collections.Generic;
using System.Ling;
using System.Text;

using System.Threading.Tasks;

namespace lab3 siit kirill ii 11
{
class Net
{
public List<double> etalonInput?2;
public List<double> etalonResult2;
public List<List<double>> wl;
public List<double> w2;
public int fitness;

double[,] etalonInput = new doublel[, ]

{

{-1, -1, -1, -1, -1 1},
{-1, -1, -1, -1, 1},
{-1, -1, -1, 1, -1},
{-1, -1, -1, 1, 1},
{-, -1, 1, -1, -13%,
{-1, -1, 1, -1, 1},
{-1, -1, 1, 1, -1},
{-1, -1, 1, 1, 1},
{-, 1, -1, -1, -13%,
{-1, 1, -1, -1, 1},
{-1, 1, -1, 1, -1},
{-1, 1, -1, 1, 1},
{-1, 1, 1, -1, -1},
{-1, 1, 1, -1, 1},
{-1, 1, 1, 1, -1},
{-1, 1, 1, 1, 1},
{1, -1, -1, -1, -1},
{1, -1, -1, -1, 1},
{1, -1, -1, 1, -1},
{1, -1, -1, 1, 1},
{1, -1, 1, -1, -1},

14

’

’

’

{1/ _1/ lr _1/ 1}/
{1/ _1/ lr lr _1}1
{ll _ll lr lr l}l

{ll lr _ll _ll _l}l
{ll lr _ll _ll 1}1
{1/ lr _11 1/ _1}1



KIRILL ZABRODSKY II-11 LAB-3 SIIT

{1, 1, -1, 1, 1%,

{1, 1, 1, -1, -1},

{1, 1, 1, -1, 1%,

{1, 1, 1, 1, -1},

{1, 1, 1, 1, 1}};

double[] etalonResult = new double][]

{1, 0, 0, 1, 0, 2, 1, 0, O, 1, 1, O, 1, O, O, 1, O, 1, 1, O,
i 1, o0, 0, 1, 0, 1, 1, 0};

public Net (List<List<double>> wl,List<double> w2)

{

}

this.wl = wl;
this.w2 = w2;

fitness = getFitness (wl,w2);

private int getFitness (List<List<double>> wl, List<double> w2)

{

int count = 0;
for (int k = 0; k < 32; k++)
{
List<double> tempLayout = new List<double>();
for (int 1 = 0; 1 < wl.Count; 1i++)
{
double tempWeight = 0;
for (int j = 0; j < 5; J++)
{
tempWeight += etalonInput(k,i]* wl[i]l[3];
}
tempLayout.Add (tempWeight) ;
}
double final = 0;
for(int i=0; i<tempLayout.Count;i++)
{
final += templLayout[i] * w2[i];
}
double afterActivation;
if (final > 0)

afterActivation= 1;

else
afterActivation= - 1;

if (afterActivation == etalonResult[k])
count++;

}

return count;



KIRILL ZABRODSKY II-11 LAB-3 SIIT

Population.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3 siit kirill ii 11
{
class Population
{
public List<Net> Nets;
public int theBestFitness;
public int avarageFitness;
public Population (List<Net> Nets)
{
this.Nets = Nets;
theBestFitness

getTheBestFitness (Nets) ;

avarageFitness getAvarageFitness (Nets) ;
}
public int getTheBestFitness (List<Net> Nets)
{
int bestFitness = 0;
for (int 1 = 0; 1 < Nets.Count; i++)
i1f (bestFitness < Nets[i].fitness)
bestFitness = Nets[1i].fitness;
return bestFitness;
}
public int getAvarageFitness (List<Net> Nets)
{
int avarageFitness = 0;
for (int 1 = 0; 1 < Nets.Count; i++)
avarageFitness += Nets[i].fitness;
avarageFitness /= Nets.Count;

return avarageFitness;



Neural network model:

Weight Value
w1 0,64736
W2 0,976
W3 0,621
w4 0,935
W5 -0,9306
W6 0,438
W7 0,8001
W8 0,7912
W9 0,9146

W10 0,6823
w11 0,7412
W12 0,601

w13 -0,498
w14 -0,814
W15 0,6954

KIRILL ZABRODSKY II-11 LAB-3 SIIT

W16 0,0689
W17 0,6957
W18 0,4035
W19 -0,2287
W20 0,8953
w21 0,8547
W22 -0,3124
W23 -0,7156
W24 | -0,26108
W25 0,3478
W26 | 0,521478
W27 | -0,45633
W28 -0,8012
W29 0,80123
W30 0,7415




KIRILL ZABRODSKY II-11 LAB-3 SIIT

Table of reference values:




KIRILL ZABRODSKY II-11 LAB-3 SIIT

reference

values

44
32

35
29

26
27

10
23

1
19

iteration

fitness




