
MINISTRY OF EDUCATION REPUBLIC OF ESTABLISHMENT OF

 EDUCATION "BREST STATE TECHNICHNICAL UNIVERSITY"

Practice work №3

«Evolutionary Computation»

Subject: «Neural Network for Even-n-Parity»

 Made by:
Uladzimier Shukailo

Checked by:

Pr. Imada

2016

5-5-1 structure of feedforward neural network

Etalon values:

x1 x2 x3 x4 x5 y

1 1 1 1 1 -1

1 1 1 1 -1 1

1 1 1 -1 1 1

1 1 1 -1 -1 -1

1 1 -1 1 1 1

1 1 -1 1 -1 -1

1 1 -1 -1 1 -1

1 1 -1 -1 -1 1

1 -1 1 1 1 1

1 -1 1 1 -1 -1

1 -1 1 -1 1 -1

1 -1 1 -1 -1 1

1 -1 -1 1 1 -1

1 -1 -1 1 -1 1

1 -1 -1 -1 1 1

1 -1 -1 -1 -1 -1

-1 1 1 1 1 1

-1 1 1 1 -1 -1

-1 1 1 -1 1 -1

-1 1 1 -1 -1 1

-1 1 -1 1 1 -1

-1 1 -1 1 -1 1

-1 1 -1 -1 1 1

-1 1 -1 -1 -1 -1

-1 -1 1 1 1 -1

-1 -1 1 1 -1 1

-1 -1 1 -1 1 1

-1 -1 1 -1 -1 -1

-1 -1 -1 1 1 1

-1 -1 -1 1 -1 -1

-1 -1 -1 -1 1 -1

-1 -1 -1 -1 -1 1

Weight values:

0

5

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Fitness vs Generation

W1 0,3125

W2 0,6124

W3 0,2353

W4 -0,6124

W5 0,8342

W6 -0,1256

W7 -0,3521

W8 -0,2317

W9 0,2124

W10 0,1252

W11 -0,2461

W12 -0,3236

W13 0,2136

W14 0,9563

W15 -0,2371

W16 0,3713

W17 0,8345

W18 0,2723

W19 -0,8342

W20 -0,7324

W21 0,3622

W22 0,7235

W23 0,5236

W24 -0,2672

W25 -0,7233

W26 0,2372

W27 -0,7343

W28 0,3452

W29 0,1361

W30 0,7235

Listing:

#include "stdafx.h"
#include "time.h"
#include <iostream>
#include <fstream>

using namespace std;

double generation[100][30];
int inputs[32][5];
int fitness[100];
int answers[32];
ofstream file_best;

Generation 1 8 17 35 47

 Fitness 21 26 28 30 32

 Outputs 1 1 1 1 1

 -1 -1 1 -1 -1

 1 1 1 1 1

 1 1 1 1 1

 -1 -1 -1 -1 -1

 1 1 1 1 1

 -1 -1 -1 1 -1

 1 -1 -1 -1 -1

 1 1 1 1 1

 -1 1 1 1 1

 -1 -1 -1 -1 -1

 1 -1 1 -1 -1

 1 1 -1 1 1

 -1 -1 -1 -1 -1

 -1 1 1 1 1

 1 1 -1 -1 1

 1 -1 -1 -1 -1

 1 1 1 1 1

 -1 1 -1 -1 -1

 1 1 -1 -1 -1

 1 -1 1 1 1

 -1 -1 -1 -1 -1

 -1 1 1 1 1

 -1 -1 1 1 1

 1 -1 -1 -1 -1

 -1 1 -1 -1 -1

 -1 1 1 1 1

 -1 -1 1 1 1

 -1 -1 -1 -1 -1

 1 1 1 1 1

 -1 -1 -1 -1 -1

 -1 -1 -1 -1 -1

 1 1 1 1 1

ofstream file_chromo;
int gen=0;

void inp()
{
 for(int i=1;i<32;i=i+2)
 inputs[i][4]=1;
 for(int i=2;i<32;i=i+4)
 {
 inputs[i][3]=1;
 inputs[i+1][3]=1;
 }
 for(int i=4;i<32;i=i+8)
 {
 inputs[i][2]=1;
 inputs[i+1][2]=1;
 inputs[i+2][2]=1;
 inputs[i+3][2]=1;
 }
 for(int i=8;i<32;i=i+16)
 {
 inputs[i][1]=1;
 inputs[i+1][1]=1;
 inputs[i+2][1]=1;
 inputs[i+3][1]=1;
 inputs[i+4][1]=1;
 inputs[i+5][1]=1;
 inputs[i+6][1]=1;
 inputs[i+7][1]=1;
 }
 for(int i=16;i<32;i++)
 inputs[i][0]=1;
 for(int i=0;i<32;i++)
 for(int j=0;j<5;j++)
 if(inputs[i][j]==0)
 inputs[i][j]=-1;
}

void answer()
{
 for(int i=0;i<32;i++)
 {
 int ones=0;
 for(int j=0;j<5; j++)
 {
 if(inputs[i][j]==1)
 ones++;
 }
 answers[i]=ones%2==0?1:-1;
 }
}

void work()
{
 memset(fitness,0,100*sizeof(int));
 for(int g=0;g<100;g++)
 {
 double neuro[5];
 double output=0;

 for(int i=0;i<32;i++)
 {
 memset(neuro,0,5*sizeof(double));
 for(int k=0;k<5;k++)
 {

 for(int j=0;j<5;j++)
 neuro[k]+=generation[g][k*5+j]*inputs[i][j];
 if(neuro[k]>=0)
 neuro[k]=1;
 else
 neuro[k]=-1;

 }
 output=0;
 for(int k=0;k<5;k++)
 {
 output+=neuro[k]*generation[g][25+k];
 }
 if(output>=0)
 output=1;
 else
 output=-1;
 if(output==answers[i])
 fitness[g]++;
 }
 }
}

void sort()
{
 for(int i=0;i<100;i++)
 for(int j=0;j<100;j++)
 if(i!=j
&&((i<j&&fitness[i]<fitness[j])||(i>j&&fitness[i]>fitness[j])))
 {
 for(int k=0;k<30;k++)
 {
 double gen_t=generation[i][k];
 generation[i][k]=generation[j][k];
 generation[j][k]=gen_t;
 }
 int fit_t = fitness[i];
 fitness[i]=fitness[j];
 fitness[j]=fit_t;
 }
}

void mutation()
{
 for(int i=0;i<100;i++)
 for(int j=0;j<30;j++)
 if(rand()%30==0)
 {
 generation[i][j]=(double)(rand()%1001)/1000;
 if(rand()%2)
 generation[i][j]=-generation[i][j];
 }
}

void cross()
{
 double new_gener[100][30];
 for(int i=0;i<100;i++)
 {
 int mama=rand()%50;
 int papa=rand()%50;
 for(int j=0;j<30;j++)
 if(rand()%2==0)
 new_gener[i][j]=generation[mama][j];
 else

 new_gener[i][j]=generation[papa][j];
 }
 memcpy(generation,new_gener,100*30*sizeof(double));
}

void stats()
{
 file_best<<fitness[0]<<endl;
 file_chromo<<++gen<<endl<<"___________"<<endl;
 for(int i=0;i<30;i++)
 file_chromo<<generation[0][i]<<endl;

}

int _tmain(int argc, _TCHAR* argv[])
{
 srand(time(NULL));
 for(int i=0;i<100;i++)
 {
 for(int j=0;j<30;j++)
 {
 generation[i][j]=(double)(rand()%1001)/1000;
 if(rand()%2)
 generation[i][j]=-generation[i][j];
 }
 }
 file_best.open("best.txt",ios_base::trunc);
 file_chromo.open("chromo.txt",ios_base::trunc);
 inp();
 answer();
 for(int i=0;i<300;i++)
 {
 work();
 sort();
 cross();
 mutation();
 cout<<fitness[0]<<endl;
 stats();
 if(fitness[0]==32)
 {
 cout<<"End"<<endl;
 file_best.close();
 file_chromo.close();
 exit(0);
 }
 }
 return 0;
}

