Task 1

#include "stdafx.h"
#include "time.h"
#tinclude <iostream>
#tinclude <fstream>

using namespace std;

double generation[100][30];
int inputs[32][5];

int fitness[100];

int answers[32];

ofstream file_best;

ofstream file_chromo;

int gen=0;

void inp()

{
for(int i=1;i<32;i=i+2)

inputsli][4]=1;

for(int i=2;i<32;i=i+4)

{
inputsli][3]=1;
inputs[i+1][3]=1;

}

for(int i=4;i<32;i=i+8)

{
inputsli][2]=1;
inputs[i+1][2]=1;
inputs[i+2][2]=1;
inputs[i+3][2]=1;

}

for(int i=8;i<32;i=i+16)

{
inputsli][1]=1;
inputs[i+1][1]=1;
inputs[i+2][1]=1;
inputs[i+3][1]=1;
inputs[i+4][1]=1;
inputs[i+5][1]=1;
inputs[i+6][1]=1;
inputs[i+7][1]=1;

}

for(int i=16;i<32;i++)
inputsli][0]=1;

for(int i=0;i<32;i++)
for(int j=0;j<5;j++)

if(inputsli][j]==0)

Source code:

inputs[i][j]=-1;

}
void answer()
{
for(int i=0;i<32;i++)
{
int ones=0;
for(int j=0;j<5; j++)
{
if(inputs[i][jl==1)
ones++;
}
answers[i]J=ones%2==07?1:-1;
}
}
void work()
{

memset(fitness,0,100*sizeof(int));
for(int g=0;g<100;g++)
{

double neuro[5];

double output=0;

for(int i=0;i<32;i++)
{
memset(neuro,0,5*sizeof(double));
for(int k=0;k<5;k++)
{
for(int j=0;j<5;j++)
neuro[k]+=generation[g][k*5+j]*inputs[il[j];
if(neuro[k]>=0)
neuro[k]=1;
else
neuro[k]=-1;

}

output=0;

for(int k=0;k<5;k++)

{
output+=neuro[k]*generation[g][25+k];

}

if(output>=0)
output=1;

else
output=-1;

if(output==answersli])
fitness[g]++;

void sort()

{
for(int i=0;i<100;i++)
for(int j=0;j<100;j++)

if(il=j &&((i<j&&fitness[i]<fitness[j])| | (i>j&&fitness[i]>fitness[j])))

{
for(int k=0;k<30;k++)

{
double gen_t=generation[i][k];
generation[il[k]=generation[j][k];
generation[j][k]=gen_t;
1
int fit_t = fitness[i];
fitness[i]=fitness[j];
fitness[j]=fit_t;
}
}
void mutation()
{
for(int i=0;i<100;i++)
for(int j=0;j<30;j++)

if(rand()%30==0)

{
generation[i][j]=(double)(rand()%1001)/1000;
if(rand()%2)

generation[i][j]=-generation[i][j];

}

1
void cross()
{
double new_gener[100][30];
for(int i=0;i<100;i++)
{
int mama=rand()%50;
int papa=rand()%50;
for(int j=0;j<30;j++)

if(rand()%2==0)
new_generlil[j]=generation[mama][j];

else
new_generl[il[j]=generation[papa](j];

}
memcpy(generation,new_gener,100*30*sizeof(double));
}
void stats()
{

file_best<<fitness[0]<<endl;

file_chromo<<++gen<<endl<<" "<<endl;

for(int i=0;i<30;i++)
file_chromo<<generation[0][i]<<endl;

}

int _tmain(int argc, _TCHAR* argv[])

{

srand(time(NULL));
for(int i=0;i<100;i++)

{
for(int j=0;j<30;j++)
{
generation[i][j]=(double)(rand()%1001)/1000;
if(rand()%2)
generationli][j]=-generationli][j];
}
}

file_best.open("best.txt",ios_base::trunc);
file_chromo.open("chromo.txt",ios_base::trunc);
inp();
answer();
for(int i=0;i<5000;i++)
{
work();
sort();
cross();
mutation();
cout<<fitness[0]<<endl;
stats();
if(fitness[0]==32)
{
cout<<"END"<<endl;
file_best.close();
file_chromo.close();
exit(0);

}

return O;

32

Best fitness

Generation 1;

Wij Etalon Result
-0.219 1 -1
0.074 -1 1
-0.541 -1 -1
0.91 1 1
-0.641 -1 1
0.317 1
0.494 -1
0.121 -1 1
0.304 -1 -1
0.084 1
0.687 -1
0.087 -1 -1
0.806 1 1
0.025 -1 1
0.311 -1 -1
-0.181 1 -1
-0.114 -1 1
-0.621 1
0.622 -1
0.005 -1 -1
-0.142 1 1
-0.013 -1 1
0.009 -1 -1
0.664 1
-0.814 -1
-0.538 -1 1

-0.199 -1 -1
0.054 1 -1
0.366 -1 -1
-0.072 1 1
1 -1
-1 1
140%™ generation
Wij Etalon Result
0.593 1 1
0.965 -1 -1
0.771 -1 -1
0.929 1 1
0.77 -1 -1
-0.602 1 1
0.546 1 1
-0.908 -1 -1
-0.558 -1 1
-0.53 1 1
0.213 1 1
-0.909 -1 -1
0.436 1 1
0.266 -1 -1
0.399 -1 -1
-0.025 1 1
-0.035 -1 -1
0.87 1 1
0.307 1 1
-0.57 -1 -1
-0.455 1 1
-0.276 -1 -1
0.385 -1 -1
-0.631 1 -1
-0.043 1 1
-0.997 -1 -1
-0.756 -1 -1
-0.854 1 1
-0.116 -1 -1
-0.13 1 1
1 1
-1 -1
Last generation
Wij Etalon Result
0.609 1 1

0.7 -1 -1
0.771 -1 -1
0.641 1 1
0.649 -1 -1
-0.602 1 1
0.528 1 1
-0.625 -1 -1
-0.56 -1 -1
-0.602 1 1
0.213 1 1
-0.902 -1 -1
0.336 1 1
0.266 -1 -1
0.232 -1 -1
-0.287 1 1
0.873 -1 -1
0.943 1 1
0.594 1 1
-0.57 -1 -1
0.044 1 1
-0.027 -1 -1
-0.294 -1 -1
-0.689 1 1
-0.538 1 1
-0.978 -1 -1
-0.756 -1 -1
-0.854 1 1
0.096 -1 -1
-0.13 1 1

1 1

-1 -1

