
Task 1

Source code:

#include "stdafx.h"

#include "time.h"

#include <iostream>

#include <fstream>

using namespace std;

double generation[100][30];

int inputs[32][5];

int fitness[100];

int answers[32];

ofstream file_best;

ofstream file_chromo;

int gen=0;

void inp()

{

 for(int i=1;i<32;i=i+2)

 inputs[i][4]=1;

 for(int i=2;i<32;i=i+4)

 {

 inputs[i][3]=1;

 inputs[i+1][3]=1;

 }

 for(int i=4;i<32;i=i+8)

 {

 inputs[i][2]=1;

 inputs[i+1][2]=1;

 inputs[i+2][2]=1;

 inputs[i+3][2]=1;

 }

 for(int i=8;i<32;i=i+16)

 {

 inputs[i][1]=1;

 inputs[i+1][1]=1;

 inputs[i+2][1]=1;

 inputs[i+3][1]=1;

 inputs[i+4][1]=1;

 inputs[i+5][1]=1;

 inputs[i+6][1]=1;

 inputs[i+7][1]=1;

 }

 for(int i=16;i<32;i++)

 inputs[i][0]=1;

 for(int i=0;i<32;i++)

 for(int j=0;j<5;j++)

 if(inputs[i][j]==0)

 inputs[i][j]=-1;

}

void answer()

{

 for(int i=0;i<32;i++)

 {

 int ones=0;

 for(int j=0;j<5; j++)

 {

 if(inputs[i][j]==1)

 ones++;

 }

 answers[i]=ones%2==0?1:-1;

 }

}

void work()

{

 memset(fitness,0,100*sizeof(int));

 for(int g=0;g<100;g++)

 {

 double neuro[5];

 double output=0;

 for(int i=0;i<32;i++)

 {

 memset(neuro,0,5*sizeof(double));

 for(int k=0;k<5;k++)

 {

 for(int j=0;j<5;j++)

 neuro[k]+=generation[g][k*5+j]*inputs[i][j];

 if(neuro[k]>=0)

 neuro[k]=1;

 else

 neuro[k]=-1;

 }

 output=0;

 for(int k=0;k<5;k++)

 {

 output+=neuro[k]*generation[g][25+k];

 }

 if(output>=0)

 output=1;

 else

 output=-1;

 if(output==answers[i])

 fitness[g]++;

 }

 }

}

void sort()

{

 for(int i=0;i<100;i++)

 for(int j=0;j<100;j++)

 if(i!=j &&((i<j&&fitness[i]<fitness[j])||(i>j&&fitness[i]>fitness[j])))

 {

 for(int k=0;k<30;k++)

 {

 double gen_t=generation[i][k];

 generation[i][k]=generation[j][k];

 generation[j][k]=gen_t;

 }

 int fit_t = fitness[i];

 fitness[i]=fitness[j];

 fitness[j]=fit_t;

 }

}

void mutation()

{

 for(int i=0;i<100;i++)

 for(int j=0;j<30;j++)

 if(rand()%30==0)

 {

 generation[i][j]=(double)(rand()%1001)/1000;

 if(rand()%2)

 generation[i][j]=-generation[i][j];

 }

}

void cross()

{

 double new_gener[100][30];

 for(int i=0;i<100;i++)

 {

 int mama=rand()%50;

 int papa=rand()%50;

 for(int j=0;j<30;j++)

 if(rand()%2==0)

 new_gener[i][j]=generation[mama][j];

 else

 new_gener[i][j]=generation[papa][j];

 }

 memcpy(generation,new_gener,100*30*sizeof(double));

}

void stats()

{

 file_best<<fitness[0]<<endl;

 file_chromo<<++gen<<endl<<"___________"<<endl;

 for(int i=0;i<30;i++)

 file_chromo<<generation[0][i]<<endl;

}

int _tmain(int argc, _TCHAR* argv[])

{

 srand(time(NULL));

 for(int i=0;i<100;i++)

 {

 for(int j=0;j<30;j++)

 {

 generation[i][j]=(double)(rand()%1001)/1000;

 if(rand()%2)

 generation[i][j]=-generation[i][j];

 }

 }

 file_best.open("best.txt",ios_base::trunc);

 file_chromo.open("chromo.txt",ios_base::trunc);

 inp();

 answer();

 for(int i=0;i<5000;i++)

 {

 work();

 sort();

 cross();

 mutation();

 cout<<fitness[0]<<endl;

 stats();

 if(fitness[0]==32)

 {

 cout<<"END"<<endl;

 file_best.close();

 file_chromo.close();

 exit(0);

 }

 }

 return 0;

}

Generation 1;

Wij Etalon Result

-0.219 1 -1

0.074 -1 1

-0.541 -1 -1

0.91 1 1

-0.641 -1 1

0.317 1 1

0.494 1 -1

0.121 -1 1

0.304 -1 -1

0.084 1 1

0.687 1 -1

0.087 -1 -1

0.806 1 1

0.025 -1 1

0.311 -1 -1

-0.181 1 -1

-0.114 -1 1

-0.621 1 1

0.622 1 -1

0.005 -1 -1

-0.142 1 1

-0.013 -1 1

0.009 -1 -1

0.664 1 1

-0.814 1 -1

-0.538 -1 1

-0.199 -1 -1

0.054 1 -1

0.366 -1 -1

-0.072 1 1

 1 -1

 -1 1

140th generation

Wij Etalon Result

0.593 1 1

0.965 -1 -1

0.771 -1 -1

0.929 1 1

0.77 -1 -1

-0.602 1 1

0.546 1 1

-0.908 -1 -1

-0.558 -1 1

-0.53 1 1

0.213 1 1

-0.909 -1 -1

0.436 1 1

0.266 -1 -1

0.399 -1 -1

-0.025 1 1

-0.035 -1 -1

0.87 1 1

0.307 1 1

-0.57 -1 -1

-0.455 1 1

-0.276 -1 -1

0.385 -1 -1

-0.631 1 -1

-0.043 1 1

-0.997 -1 -1

-0.756 -1 -1

-0.854 1 1

-0.116 -1 -1

-0.13 1 1

 1 1

 -1 -1

Last generation

Wij Etalon Result

0.609 1 1

0.7 -1 -1

0.771 -1 -1

0.641 1 1

0.649 -1 -1

-0.602 1 1

0.528 1 1

-0.625 -1 -1

-0.56 -1 -1

-0.602 1 1

0.213 1 1

-0.902 -1 -1

0.336 1 1

0.266 -1 -1

0.232 -1 -1

-0.287 1 1

0.873 -1 -1

0.943 1 1

0.594 1 1

-0.57 -1 -1

0.044 1 1

-0.027 -1 -1

-0.294 -1 -1

-0.689 1 1

-0.538 1 1

-0.978 -1 -1

-0.756 -1 -1

-0.854 1 1

0.096 -1 -1

-0.13 1 1

 1 1

 -1 -1

