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100 generation

Position Original Fitnes Shared

(188;22) 410.0 82.0

(178;12) 390.0 97.5

(203;1) 398.0 99.5

(167;21) 388.0 129.33333333333334
(211;25) 414.0 138.0

(246;78) 432.0 144.0

(249;95) 446.0 148.66666666666666
(235;101) 466.0 155.33333333333334
(120;132) 452.0 226.0

(142;120) 462.0 231.0

(89;989) 300.0 300.0

(49;51) 300.0 300.0

(342;122) 380.0 380.0

(257;961) 382.0 382.0

(296;90) 394.0 394.0

(140;72) 412.0 412.0

(49;221) 428.0 428.0

(207;103) 496.0 496.0

(169;177) 546.0 546.0

(202;184) 582.0 582.0

500 generation

Position Original Fitnes Shared
(540;32) 172.0 86.0
(551;27) 178.0 89.0
(483;159) 276.0 138.0
(473;155) 282.0 141.0
(447;25) 178.0 178.0
(357;119) 362.0 181.0
(355;129) 374.0 187.0
(424;976) 200.0 200.0
(487;89) 202.0 202.0
(510;902) 208.0 208.0
(385;993) 222.0 222.0
(647;7) 254.0 254.0
(433;911) 256.0 256.0
(434;108) 274.0 274.0
(403;921) 276.0 276.0
(531;147) 278.0 278.0
(342;22) 280.0 280.0
(367;63) 296.0 296.0
(436;140) 304.0 304.0

(334;50) 316.0 316.0



1000 generation 5000 generation

Position Original Fithes  Shared Position Original Fithes Shared
(993;821) 386.0 128.66666666666666 (30;522) 152.0 152.0
(976;834) 390.0 130.0 (953;545) 192.0 192.0
(988;814) 398.0 132.66666666666666 (12;376) 236.0 236.0
(1,981) 220.0 220.0 (933;427) 240.0 240.0
(30;16) 246.0 246.0 (966;620) 254.0 254.0
(969;983) 248.0 248.0 (157;495) 262.0 262.0
(8;50) 258.0 258.0 (385;335) 280.0 280.0
(975;951) 274.0 274.0 (910;596) 286.0 286.0
(51;957) 294.0 294.0 (112;422) 290.0 290.0
(928;966) 306.0 306.0 (160;404) 356.0 356.0
(81;963) 318.0 318.0 (637;725) 362.0 362.0
(963;895) 342.0 342.0 (15;157) 372.0 372.0
(914;70) 356.0 356.0 (55;281) 374.0 374.0
(115;939) 376.0 376.0 (93;705) 398.0 398.0
(39;859) 380.0 380.0 (892;304) 404.0 404.0
(99;871) 428.0 428.0 (890;276) 434.0 434.0
(858;906) 436.0 436.0 (792;46) 438.0 438.0
(69;831) 438.0 438.0 (303;249) 448.0 448.0
(941,809) 450.0 450.0 (164;748) 512.0 512.0
(96;796) 492.0 492.0 (150;216) 534.0 534.0

Source Code

/*

* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package squaredog;

import java.awt.¥*;

import java.util.Random;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.*;

/**
*
* @author kil
*/
class GeneticAlgo {

int[][] popln;
public int[][] crdnt;

public enum SelectionType {
TOURNEY, ROULETTE WHEEL, TRUNCATING

}

public enum CrossingType {
ONE_POINT RECOMBINATION, TWO_POINT RECOMBINATION,
ELEMENTWISE RECOMBINATION, ONE_ ELEMENT EXCHANGE

¥



private SelectionType slctp;

private CrossingType crstp;

private int genomLength; //[iMHa reHomMa B 6uTax
private int generationCount; //Kon-Bo nokoneHun
private int individualCount; //Kon-Bo leHomos (WHouMBupooB,0cobein) B nokoneHuwu
private int[] chosenchromosom;

private SelectionType selectionType; //Tun Cenekuuu
private CrossingType crossingType; //Tun CkpewuBaHus
private double[] ftnes;

private double[] orftn;

private SQUAREDOG d;

public GeneticAlgo(String s, String c, SQUAREDOG dd) {
slctp = SelectionType.valueOf(s);
crstp = CrossingType.valueOf(c);
popln = new int[20][1000];
crdnt = new int[20][2];
ftnes = new double[20];
orftn = new double[20];

d = dd;

for (int i = 0; i < 20; i++) {
crdnt[i][0] = 500;
crdnt[i][1l] = 500;

}

for (int i = 0; i < 20; i++) {
ftnes[i] = 600.D;

}

genomLength = 1000;
generationCount = 20;
individualCount = 20;
chosenchromosom = new int[20];

}

public boolean[][] run() {
this.generateFirstGeneration();
double ftnsmax = 0.D;
for (int i = 0; i < 100000000; i++) {
crdntdog();
this.selection();
ftnsmax = ftnes[0];
for (int j = 1; j < 20; j++) {

ftnsmax = (ftnsmax >= ftnes[j]) ? ftnes[]] : ftnsmax;
}
System.out.print(avgfitnes());
System.out.print(":");

System.out.print(ftnsmax);
System.out.println();
if (i == 0 || i == 100 || 1 == 500 || i == 1000 || i == 5000) {
System.out.print(i + " generation");
System.out.println();
for (int j = 0; j < 20; j++) {
System.out.print("("+crdnt[j][0]+";"+tcrdnt[j]I[1]+")");
System.out.print(":");
System.out.print(orftn[j]);
System.out.print(":");
System.out.print(ftnes[j]);
System.out.println();



d.repaint();
try {
Thread.sleep(00);
} catch (InterruptedException ex) {
Logger.getLogger (SQUAREDOG.class.getName()).log(Level.SEVERE,
null, ex);

}

if (ftnsmax == 1000) {
break;

}

ftnsmax = 0.D;

}

return (new boolean[20][1000]);
}

private void generateFirstGeneration() {
Random rnd = new Random();
for (int 1 = 0; i < 20; i++) {
for (int j = 0; j < 1000; j++) {
popln[i][j] = Math.abs(rnd.nextInt()) % 4 + 1;
}

}
} //reHepauus nepBoro MOKOJIEHUS

private void selection() {
int[][] genomListOffsprings = new int[20][1000];
Random rndd = new Random();
switch (this.slctp) {
case ROULETTE_WHEEL HER
double[] wheel = new double[this.individualCount];

wheel[0] = fitnes(0);//3HayeHne OUTHeCCOYHKUMM ONd 1-0ro reHoma
this.chosenchromosom[0] = 0;
for (int i = 1; i < this.individualCount; i++) {
wheel[i] = wheel[i - 1] + fitnes(i);//3Ha4yeHue
OnTHeCCOYHKUMN ONna i-oro reHoma
this.chosenchromosom[i] = 0;
}
double all = wheel[this.individualCount - 17];

for (int i 0; i < this.individualCount; i++) {

double index = Math.abs(rndd.nextFloat()) * all;
int 1 = 0;
int r = individualCount - 1;

int ¢ = 0;
while (1 < r) {

c=(1+r) >1;
if (index <= wheel[c]) {
r = c;
} else {
l=c+ 1;
}
}
int a = 1;
index = Math.abs(rndd.nextFloat()) * all;
1 =0;
r = individualCount - 1;
c = 0;

while (1 < r) {



c=(1+r1r) > 1;

if (index <= wheel[c]) {
r =c;
} else {

¥
¥

this.chosenchromosom[1l]++;
this.chosenchromosom[a]++;

genomListOffsprings[i] = this.crossing(l, a);
}
popln = genomListOffsprings;
break;

}
case TOURNEY: {
for (int i = 0; i < this.individualCount; i++) {

int indexl = rndd.nextInt(individualCount);
int index2 = rndd.nextInt(individualCount);
int index3 = rndd.nextInt(individualCount);
int index4 = rndd.nextInt(individualCount);
double frl = fitnes(indexl);
double fr2 = fitnes(index2);
indexl = (frl > fr2) ? indexl : index2;
double fr3 = fitnes(index3);
double fr4 = fitnes(index4);

index2 = (fr3 > fr4) ? index3 : index4;
genomListOffsprings[i] = this.crossing(indexl, index2);
}
popln = genomListOffsprings;
break;

}
case TRUNCATING: {

this.sort();
for (int i = 0; i < this.individualCount; i++) {
genomListOffsprings[i] =

this.crossing((Math.abs(rndd.nextInt())) % 10, (Math.abs(rndd.nextInt())) % 10);

}
popln = genomListOffsprings;
break;

}

default:
break;

}

} //Mpouenypa cenekuu

private int[] crossing(int a, int b) {
int[] vec = new int[1000];
switch (crstp) {
case ONE_ELEMENT EXCHANGE: {
for (int i = 0; i < genomLength; i++) {
Random rndd = new Random();
vec[i] = (rndd.nextBoolean()) ? popln[b][i] : popln[a]l[i];
}
break;
}
case ONE_POINT RECOMBINATION: {
Random rndd = new Random();
int point = Math.abs(rndd.nextInt()) % genomLength;
System.arraycopy(popln[a], 0, vec, 0, point);



System.arraycopy(popln[b], point, vec, point, genomLength -

point);
break;
}
default:
break;
}
//mutation

Random rdd = new Random();
for (int i = 0; i < 1000; i++) {
vec[i] (((Math.abs(rdd.nextInt())) % 1000) == 0) ?
(Math.abs(rdd.nextInt())) % 4 + 1 : vec[i];
}
return vec;
} //Mpouenypa cKpewmBaHua

private double fitnes(int nmb) {

double a, b, c, d;

a = dst(crdnt[nmb][0], crdnt[nmb][1], 200, 200);

b = dst(crdnt[nmb][0], crdnt[nmb][1], 800, 200);

c dst(crdnt[nmb][0], crdnt[nmb][1], 200, 800);

d dst(crdnt[nmb][0], crdnt[nmb][1], 800, 800);

double originalftns = 600 - Math.abs(Math.min(Math.min(a, b),
Math.min(c, d)));

orftn[nmb]=originalftns;

double sumdij = 0.D;

for (int 1 = 0; i < 20; i++) {

sumdij += ((Math.abs(crdnt[nmb][0] - crdnt[i][0]) <= 25) &&

(Math.abs(crdnt[nmb][1] - crdnt[i][1l]) <= 25) && (dst(crdnt[nmb][0], crdnt[nmb]
[1], cxdnt[i][0], crdnt[i][1l]) < 50)) ? 1 - dst(crdnt[nmb][0], crdnt[nmb][1l],
crdnt[i][0], crdnt[i][1]) / 50 : O;

}

return originalftns / sumdij;

} //0nTHEC QYyHKUUSA

private int dst(int x1, int yl1l, int x2, int y2) {
return Math.abs(xl - x2) + Math.abs(yl - y2);
}

private double avgfitnes() {
double ftns = 0.D;
for (int 1 = 0; i < 20; i++) {
ftns += this.ftnes[i];
}
return ftns / 20;
} //0utHec ¢yHKumMA

private void crdntdog() {
for (int i = 0; i < 20; i++) {
for (int j = 0; Jj < 1000; j++) {
switch (popln[i][j]) {
case 1l: {
crdnt[i][1] += (crdnt[i][1]

1000) 2?2 -999 : 1;

break;
}
case 2: {
crdnt[i][1l] -= (crdnt[i][l] == 0) ? -999 : 1;

break;



}
case 3: {
crdnt[i][0] += (crdnt[i][0]

1000) 2 =999 : 1;

break;
}
case 4: {
crdnt[i][0] -= (crdnt[i][0] == 0) ? -999 : 1;
break;
}
default: {
System.out.print ("ERROR!");
break;
}
}
}
}
}
private void sort() {
for (int i = 0; i < this.individualCount; i++) {
ftnes[i] = fitnes(i);
}
for (int i = 0; i < this.individualCount; i++) {
int[] amiba;
amiba = new int[1000];
amiba = popln[i];
double fit = ftnes[i];
double ft=orftn[i];
int[] ¢ = new int[2];
c = crdnt[i];
for (int j = i; j < this.individualCount; j++) {
if (ftnes[j] < fit) {
fit = ftnes[]];
ft=orftn[j];
amiba = popln[j];
popln[j] = popln[i];
popln[i] = amiba;
ftnes[j] = ftnes[i];
orftn[jl=orftn[i];
ftnes[i] = fit;
orftn[i]=ft;
c = crdnt[j];
crdnt[j] = crdnt[i];
crdnt[i] = c;
}
}
}
}

}
public class SQUAREDOG extends JPanel {
public GeneticAlgo p;
public SQUAREDOG() {
JFrame frame = new JFrame("SQUAREDOG");
frame.setMinimumSize(new Dimension(1000, 1000));

frame.setDefaultCloseOperation(WindowConstants.EXIT ON_CLOSE);
frame.getContentPane().add(this);



frame.pack();

Container ¢ = frame.getContentPane();
this.setLayout (new GridLayout (1000, 1));
for (int i = 0; i < 1; i++) {

this.add(new JLabel(" "));
}
JScrollPane jsp = new JScrollPane(this);
c.add(jsp);

frame.setSize (1000, 1000);
frame.setVisible(true);
p = new GeneticAlgo("TRUNCATING", "ONE_ELEMENT EXCHANGE", this);
p.run();
//repaint();
}

@Override

protected void paintComponent (Graphics g) {
super.paintComponent(g);
g.setColor(Color.orange);
g.drawRect (0, 0, 1000, 1000);
g.fillRect (200, 200, 15, 5);
g.fillRect (200, 800, 15, 5);
g.fillRect (800, 200, 15, 5);
g.fillRect (800, 800, 15, 5);
g.setColor(Color.red);
for (int 1 = 0; i < 20; i++) {

g.fillRect(p.crdnt[i][0], p.crdnt[i][1], 5, 5);

-

}

/[ **
* @param args the command line arguments
*/
public static void main(String[] args) throws InterruptedException {
SQUAREDOG d = new SQUAREDOG();

// TODO code application logic here



