3 - Kirill Tsibikov

Lucky Dog

Brest 2016

Shared Fitnes

500

450

400

350

300

250

200

150

e

0 generation

Position
(505;497)
(499;509)
(503;509)
(505;511)
(485;495)
(496;516)
(497;517)
(493;489)
(484;490)
(474;500)
(484;484)
(505;523)
(487;523)
(466;496)
(527,;489)
(498;540)
(521,;483)
(459;473)
(570;498)
(523;433)

Iteration

|
M N

‘\
‘
|

!,}

———————————

l

o 4 &

AN SRS
4O P S & P P S
MG

Original Fitnes Shared

8.0

10.0
12.0
16.0
20.0
20.0
20.0
18.0
26.0
26.0
32.0
28.0
36.0
38.0
38.0
42.0
38.0
68.0
72.0
90.0

0.6666666666666666
0.7692307692307693
0.9230769230769231
1.3333333333333333
1.6666666666666667
1.8181818181818181
1.8181818181818181
2.0
2.3636363636363638
2.6

3.2

3.5

4.0
6.333333333333333
7.6

8.4
12.666666666666666
17.0

72.0

90.0

Average
—— Best(minimum)

100 generation

Position Original Fitnes Shared

(188;22) 410.0 82.0

(178;12) 390.0 97.5

(203;1) 398.0 99.5

(167;21) 388.0 129.33333333333334
(211;25) 414.0 138.0

(246;78) 432.0 144.0

(249;95) 446.0 148.66666666666666
(235;101) 466.0 155.33333333333334
(120;132) 452.0 226.0

(142;120) 462.0 231.0

(89;989) 300.0 300.0

(49;51) 300.0 300.0

(342;122) 380.0 380.0

(257;961) 382.0 382.0

(296;90) 394.0 394.0

(140;72) 412.0 412.0

(49;221) 428.0 428.0

(207;103) 496.0 496.0

(169;177) 546.0 546.0

(202;184) 582.0 582.0

500 generation

Position Original Fitnes Shared
(540;32) 172.0 86.0
(551;27) 178.0 89.0
(483;159) 276.0 138.0
(473;155) 282.0 141.0
(447;25) 178.0 178.0
(357;119) 362.0 181.0
(355;129) 374.0 187.0
(424;976) 200.0 200.0
(487;89) 202.0 202.0
(510;902) 208.0 208.0
(385;993) 222.0 222.0
(647;7) 254.0 254.0
(433;911) 256.0 256.0
(434;108) 274.0 274.0
(403;921) 276.0 276.0
(531;147) 278.0 278.0
(342;22) 280.0 280.0
(367;63) 296.0 296.0
(436;140) 304.0 304.0

(334;50) 316.0 316.0

1000 generation 5000 generation

Position Original Fithes Shared Position Original Fithes Shared
(993;821) 386.0 128.66666666666666 (30;522) 152.0 152.0
(976;834) 390.0 130.0 (953;545) 192.0 192.0
(988;814) 398.0 132.66666666666666 (12;376) 236.0 236.0
(1,981) 220.0 220.0 (933;427) 240.0 240.0
(30;16) 246.0 246.0 (966;620) 254.0 254.0
(969;983) 248.0 248.0 (157;495) 262.0 262.0
(8;50) 258.0 258.0 (385;335) 280.0 280.0
(975;951) 274.0 274.0 (910;596) 286.0 286.0
(51;957) 294.0 294.0 (112;422) 290.0 290.0
(928;966) 306.0 306.0 (160;404) 356.0 356.0
(81;963) 318.0 318.0 (637;725) 362.0 362.0
(963;895) 342.0 342.0 (15;157) 372.0 372.0
(914;70) 356.0 356.0 (55;281) 374.0 374.0
(115;939) 376.0 376.0 (93;705) 398.0 398.0
(39;859) 380.0 380.0 (892;304) 404.0 404.0
(99;871) 428.0 428.0 (890;276) 434.0 434.0
(858;906) 436.0 436.0 (792;46) 438.0 438.0
(69;831) 438.0 438.0 (303;249) 448.0 448.0
(941,809) 450.0 450.0 (164;748) 512.0 512.0
(96;796) 492.0 492.0 (150;216) 534.0 534.0

Source Code

/*

* To change this license header, choose License Headers in Project Properties.
* To change this template file, choose Tools | Templates

* and open the template in the editor.

*/

package squaredog;

import java.awt.¥*;

import java.util.Random;

import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.*;

/**
*
* @author kil
*/
class GeneticAlgo {

int[][] popln;
public int[][] crdnt;

public enum SelectionType {
TOURNEY, ROULETTE WHEEL, TRUNCATING

}

public enum CrossingType {
ONE_POINT RECOMBINATION, TWO_POINT RECOMBINATION,
ELEMENTWISE RECOMBINATION, ONE_ ELEMENT EXCHANGE

¥

private SelectionType slctp;

private CrossingType crstp;

private int genomLength; //[iMHa reHomMa B 6uTax
private int generationCount; //Kon-Bo nokoneHun
private int individualCount; //Kon-Bo leHomos (WHouMBupooB,0cobein) B nokoneHuwu
private int[] chosenchromosom;

private SelectionType selectionType; //Tun Cenekuuu
private CrossingType crossingType; //Tun CkpewuBaHus
private double[] ftnes;

private double[] orftn;

private SQUAREDOG d;

public GeneticAlgo(String s, String c, SQUAREDOG dd) {
slctp = SelectionType.valueOf(s);
crstp = CrossingType.valueOf(c);
popln = new int[20][1000];
crdnt = new int[20][2];
ftnes = new double[20];
orftn = new double[20];

d = dd;

for (int i = 0; i < 20; i++) {
crdnt[i][0] = 500;
crdnt[i][1l] = 500;

}

for (int i = 0; i < 20; i++) {
ftnes[i] = 600.D;

}

genomLength = 1000;
generationCount = 20;
individualCount = 20;
chosenchromosom = new int[20];

}

public boolean[][] run() {
this.generateFirstGeneration();
double ftnsmax = 0.D;
for (int i = 0; i < 100000000; i++) {
crdntdog();
this.selection();
ftnsmax = ftnes[0];
for (int j = 1; j < 20; j++) {

ftnsmax = (ftnsmax >= ftnes[j]) ? ftnes[]] : ftnsmax;
}
System.out.print(avgfitnes());
System.out.print(":");

System.out.print(ftnsmax);
System.out.println();
if (i == 0 || i == 100 || 1 == 500 || i == 1000 || i == 5000) {
System.out.print(i + " generation");
System.out.println();
for (int j = 0; j < 20; j++) {
System.out.print("("+crdnt[j][0]+";"+tcrdnt[j]I[1]+")");
System.out.print(":");
System.out.print(orftn[j]);
System.out.print(":");
System.out.print(ftnes[j]);
System.out.println();

d.repaint();
try {
Thread.sleep(00);
} catch (InterruptedException ex) {
Logger.getLogger (SQUAREDOG.class.getName()).log(Level.SEVERE,
null, ex);

}

if (ftnsmax == 1000) {
break;

}

ftnsmax = 0.D;

}

return (new boolean[20][1000]);
}

private void generateFirstGeneration() {
Random rnd = new Random();
for (int 1 = 0; i < 20; i++) {
for (int j = 0; j < 1000; j++) {
popln[i][j] = Math.abs(rnd.nextInt()) % 4 + 1;
}

}
} //reHepauus nepBoro MOKOJIEHUS

private void selection() {
int[][] genomListOffsprings = new int[20][1000];
Random rndd = new Random();
switch (this.slctp) {
case ROULETTE_WHEEL HER
double[] wheel = new double[this.individualCount];

wheel[0] = fitnes(0);//3HayeHne OUTHeCCOYHKUMM ONd 1-0ro reHoma
this.chosenchromosom[0] = 0;
for (int i = 1; i < this.individualCount; i++) {
wheel[i] = wheel[i - 1] + fitnes(i);//3Ha4yeHue
OnTHeCCOYHKUMN ONna i-oro reHoma
this.chosenchromosom[i] = 0;
}
double all = wheel[this.individualCount - 17];

for (int i 0; i < this.individualCount; i++) {

double index = Math.abs(rndd.nextFloat()) * all;
int 1 = 0;
int r = individualCount - 1;

int ¢ = 0;
while (1 < r) {

c=(1+r) >1;
if (index <= wheel[c]) {
r = c;
} else {
l=c+ 1;
}
}
int a = 1;
index = Math.abs(rndd.nextFloat()) * all;
1 =0;
r = individualCount - 1;
c = 0;

while (1 < r) {

c=(1+r1r) > 1;

if (index <= wheel[c]) {
r =c;
} else {

¥
¥

this.chosenchromosom[1l]++;
this.chosenchromosom[a]++;

genomListOffsprings[i] = this.crossing(l, a);
}
popln = genomListOffsprings;
break;

}
case TOURNEY: {
for (int i = 0; i < this.individualCount; i++) {

int indexl = rndd.nextInt(individualCount);
int index2 = rndd.nextInt(individualCount);
int index3 = rndd.nextInt(individualCount);
int index4 = rndd.nextInt(individualCount);
double frl = fitnes(indexl);
double fr2 = fitnes(index2);
indexl = (frl > fr2) ? indexl : index2;
double fr3 = fitnes(index3);
double fr4 = fitnes(index4);

index2 = (fr3 > fr4) ? index3 : index4;
genomListOffsprings[i] = this.crossing(indexl, index2);
}
popln = genomListOffsprings;
break;

}
case TRUNCATING: {

this.sort();
for (int i = 0; i < this.individualCount; i++) {
genomListOffsprings[i] =

this.crossing((Math.abs(rndd.nextInt())) % 10, (Math.abs(rndd.nextInt())) % 10);

}
popln = genomListOffsprings;
break;

}

default:
break;

}

} //Mpouenypa cenekuu

private int[] crossing(int a, int b) {
int[] vec = new int[1000];
switch (crstp) {
case ONE_ELEMENT EXCHANGE: {
for (int i = 0; i < genomLength; i++) {
Random rndd = new Random();
vec[i] = (rndd.nextBoolean()) ? popln[b][i] : popln[a]l[i];
}
break;
}
case ONE_POINT RECOMBINATION: {
Random rndd = new Random();
int point = Math.abs(rndd.nextInt()) % genomLength;
System.arraycopy(popln[a], 0, vec, 0, point);

System.arraycopy(popln[b], point, vec, point, genomLength -

point);
break;
}
default:
break;
}
//mutation

Random rdd = new Random();
for (int i = 0; i < 1000; i++) {
vec[i] (((Math.abs(rdd.nextInt())) % 1000) == 0) ?
(Math.abs(rdd.nextInt())) % 4 + 1 : vec[i];
}
return vec;
} //Mpouenypa cKpewmBaHua

private double fitnes(int nmb) {

double a, b, c, d;

a = dst(crdnt[nmb][0], crdnt[nmb][1], 200, 200);

b = dst(crdnt[nmb][0], crdnt[nmb][1], 800, 200);

c dst(crdnt[nmb][0], crdnt[nmb][1], 200, 800);

d dst(crdnt[nmb][0], crdnt[nmb][1], 800, 800);

double originalftns = 600 - Math.abs(Math.min(Math.min(a, b),
Math.min(c, d)));

orftn[nmb]=originalftns;

double sumdij = 0.D;

for (int 1 = 0; i < 20; i++) {

sumdij += ((Math.abs(crdnt[nmb][0] - crdnt[i][0]) <= 25) &&

(Math.abs(crdnt[nmb][1] - crdnt[i][1l]) <= 25) && (dst(crdnt[nmb][0], crdnt[nmb]
[1], cxdnt[i][0], crdnt[i][1l]) < 50)) ? 1 - dst(crdnt[nmb][0], crdnt[nmb][1l],
crdnt[i][0], crdnt[i][1]) / 50 : O;

}

return originalftns / sumdij;

} //0nTHEC QYyHKUUSA

private int dst(int x1, int yl1l, int x2, int y2) {
return Math.abs(xl - x2) + Math.abs(yl - y2);
}

private double avgfitnes() {
double ftns = 0.D;
for (int 1 = 0; i < 20; i++) {
ftns += this.ftnes[i];
}
return ftns / 20;
} //0utHec ¢yHKumMA

private void crdntdog() {
for (int i = 0; i < 20; i++) {
for (int j = 0; Jj < 1000; j++) {
switch (popln[i][j]) {
case 1l: {
crdnt[i][1] += (crdnt[i][1]

1000) 2?2 -999 : 1;

break;
}
case 2: {
crdnt[i][1l] -= (crdnt[i][l] == 0) ? -999 : 1;

break;

}
case 3: {
crdnt[i][0] += (crdnt[i][0]

1000) 2 =999 : 1;

break;
}
case 4: {
crdnt[i][0] -= (crdnt[i][0] == 0) ? -999 : 1;
break;
}
default: {
System.out.print ("ERROR!");
break;
}
}
}
}
}
private void sort() {
for (int i = 0; i < this.individualCount; i++) {
ftnes[i] = fitnes(i);
}
for (int i = 0; i < this.individualCount; i++) {
int[] amiba;
amiba = new int[1000];
amiba = popln[i];
double fit = ftnes[i];
double ft=orftn[i];
int[] ¢ = new int[2];
c = crdnt[i];
for (int j = i; j < this.individualCount; j++) {
if (ftnes[j] < fit) {
fit = ftnes[]];
ft=orftn[j];
amiba = popln[j];
popln[j] = popln[i];
popln[i] = amiba;
ftnes[j] = ftnes[i];
orftn[jl=orftn[i];
ftnes[i] = fit;
orftn[i]=ft;
c = crdnt[j];
crdnt[j] = crdnt[i];
crdnt[i] = c;
}
}
}
}

}
public class SQUAREDOG extends JPanel {
public GeneticAlgo p;
public SQUAREDOG() {
JFrame frame = new JFrame("SQUAREDOG");
frame.setMinimumSize(new Dimension(1000, 1000));

frame.setDefaultCloseOperation(WindowConstants.EXIT ON_CLOSE);
frame.getContentPane().add(this);

frame.pack();

Container ¢ = frame.getContentPane();
this.setLayout (new GridLayout (1000, 1));
for (int i = 0; i < 1; i++) {

this.add(new JLabel(" "));
}
JScrollPane jsp = new JScrollPane(this);
c.add(jsp);

frame.setSize (1000, 1000);
frame.setVisible(true);
p = new GeneticAlgo("TRUNCATING", "ONE_ELEMENT EXCHANGE", this);
p.run();
//repaint();
}

@Override

protected void paintComponent (Graphics g) {
super.paintComponent(g);
g.setColor(Color.orange);
g.drawRect (0, 0, 1000, 1000);
g.fillRect (200, 200, 15, 5);
g.fillRect (200, 800, 15, 5);
g.fillRect (800, 200, 15, 5);
g.fillRect (800, 800, 15, 5);
g.setColor(Color.red);
for (int 1 = 0; i < 20; i++) {

g.fillRect(p.crdnt[i][0], p.crdnt[i][1], 5, 5);

-

}

/[**
* @param args the command line arguments
*/
public static void main(String[] args) throws InterruptedException {
SQUAREDOG d = new SQUAREDOG();

// TODO code application logic here

