
3 - Kirill Tsibikov

Lucky Dog

Brest 2016

0

50

100

150

200

250

300

350

400

450

500

Average

Best(minimum)

Iteration

S
h

a
re

d
 F

itn
e

s

0 generation
Position Original Fitnes Shared
(505;497) 8.0 0.6666666666666666
(499;509) 10.0 0.7692307692307693
(503;509) 12.0 0.9230769230769231
(505;511) 16.0 1.3333333333333333
(485;495) 20.0 1.6666666666666667
(496;516) 20.0 1.8181818181818181
(497;517) 20.0 1.8181818181818181
(493;489) 18.0 2.0
(484;490) 26.0 2.3636363636363638
(474;500) 26.0 2.6
(484;484) 32.0 3.2
(505;523) 28.0 3.5
(487;523) 36.0 4.0
(466;496) 38.0 6.333333333333333
(527;489) 38.0 7.6
(498;540) 42.0 8.4
(521;483) 38.0 12.666666666666666
(459;473) 68.0 17.0
(570;498) 72.0 72.0
(523;433) 90.0 90.0

100 generation
Position Original Fitnes Shared
(188;22) 410.0 82.0
(178;12) 390.0 97.5
(203;1) 398.0 99.5
(167;21) 388.0 129.33333333333334
(211;25) 414.0 138.0
(246;78) 432.0 144.0
(249;95) 446.0 148.66666666666666
(235;101) 466.0 155.33333333333334
(120;132) 452.0 226.0
(142;120) 462.0 231.0
(89;989) 300.0 300.0
(49;51) 300.0 300.0
(342;122) 380.0 380.0
(257;961) 382.0 382.0
(296;90) 394.0 394.0
(140;72) 412.0 412.0
(49;221) 428.0 428.0
(207;103) 496.0 496.0
(169;177) 546.0 546.0
(202;184) 582.0 582.0

500 generation
Position Original Fitnes Shared
(540;32) 172.0 86.0
(551;27) 178.0 89.0
(483;159) 276.0 138.0
(473;155) 282.0 141.0
(447;25) 178.0 178.0
(357;119) 362.0 181.0
(355;129) 374.0 187.0
(424;976) 200.0 200.0
(487;89) 202.0 202.0
(510;902) 208.0 208.0
(385;993) 222.0 222.0
(647;7) 254.0 254.0
(433;911) 256.0 256.0
(434;108) 274.0 274.0
(403;921) 276.0 276.0
(531;147) 278.0 278.0
(342;22) 280.0 280.0
(367;63) 296.0 296.0
(436;140) 304.0 304.0
(334;50) 316.0 316.0

Source Code
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package squaredog;

import java.awt.*;
import java.util.Random;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.swing.*;

/**
 *
 * @author kil
 */
class GeneticAlgo {

 int[][] popln;
 public int[][] crdnt;

 public enum SelectionType {
 TOURNEY, ROULETTE_WHEEL, TRUNCATING
 }

 public enum CrossingType {
 ONE_POINT_RECOMBINATION, TWO_POINT_RECOMBINATION,
ELEMENTWISE_RECOMBINATION, ONE_ELEMENT_EXCHANGE
 }

1000 generation 5000 generation
Position Original Fitnes Shared Position Original Fitnes Shared
(993;821) 386.0 128.66666666666666 (30;522) 152.0 152.0
(976;834) 390.0 130.0 (953;545) 192.0 192.0
(988;814) 398.0 132.66666666666666 (12;376) 236.0 236.0
(1;981) 220.0 220.0 (933;427) 240.0 240.0
(30;16) 246.0 246.0 (966;620) 254.0 254.0
(969;983) 248.0 248.0 (157;495) 262.0 262.0
(8;50) 258.0 258.0 (385;335) 280.0 280.0
(975;951) 274.0 274.0 (910;596) 286.0 286.0
(51;957) 294.0 294.0 (112;422) 290.0 290.0
(928;966) 306.0 306.0 (160;404) 356.0 356.0
(81;963) 318.0 318.0 (637;725) 362.0 362.0
(963;895) 342.0 342.0 (15;157) 372.0 372.0
(914;70) 356.0 356.0 (55;281) 374.0 374.0
(115;939) 376.0 376.0 (93;705) 398.0 398.0
(39;859) 380.0 380.0 (892;304) 404.0 404.0
(99;871) 428.0 428.0 (890;276) 434.0 434.0
(858;906) 436.0 436.0 (792;46) 438.0 438.0
(69;831) 438.0 438.0 (303;249) 448.0 448.0
(941;809) 450.0 450.0 (164;748) 512.0 512.0
(96;796) 492.0 492.0 (150;216) 534.0 534.0

 private SelectionType slctp;
 private CrossingType crstp;
 private int genomLength; // Длина генома в битах
 private int generationCount; // ­ Кол во поколений
 private int individualCount; // ­ (,) Кол во Геномов Индивидов Особей в поколении
 private int[] chosenchromosom;
 private SelectionType selectionType; // Тип Селекции
 private CrossingType crossingType; // Тип Скрещивания
 private double[] ftnes;
 private double[] orftn;
 private SQUAREDOG d;

 public GeneticAlgo(String s, String c, SQUAREDOG dd) {
 slctp = SelectionType.valueOf(s);
 crstp = CrossingType.valueOf(c);
 popln = new int[20][1000];
 crdnt = new int[20][2];
 ftnes = new double[20];
 orftn = new double[20];
 d = dd;
 for (int i = 0; i < 20; i++) {
 crdnt[i][0] = 500;
 crdnt[i][1] = 500;
 }
 for (int i = 0; i < 20; i++) {
 ftnes[i] = 600.D;
 }
 genomLength = 1000;
 generationCount = 20;
 individualCount = 20;
 chosenchromosom = new int[20];
 }

 public boolean[][] run() {
 this.generateFirstGeneration();
 double ftnsmax = 0.D;
 for (int i = 0; i < 100000000; i++) {
 crdntdog();
 this.selection();
 ftnsmax = ftnes[0];
 for (int j = 1; j < 20; j++) {
 ftnsmax = (ftnsmax >= ftnes[j]) ? ftnes[j] : ftnsmax;
 }
// System.out.print(avgfitnes());
// System.out.print(":");
// System.out.print(ftnsmax);
// System.out.println();
 if (i == 0 || i == 100 || i == 500 || i == 1000 || i == 5000) {
 System.out.print(i + " generation");
 System.out.println();
 for (int j = 0; j < 20; j++) {
 System.out.print("("+crdnt[j][0]+";"+crdnt[j][1]+")");
 System.out.print(":");
 System.out.print(orftn[j]);
 System.out.print(":");
 System.out.print(ftnes[j]);
 System.out.println();
 }

 }

 d.repaint();
 try {
 Thread.sleep(00);
 } catch (InterruptedException ex) {
 Logger.getLogger(SQUAREDOG.class.getName()).log(Level.SEVERE,
null, ex);
 }
 if (ftnsmax == 1000) {
 break;
 }
 ftnsmax = 0.D;
 }

 return (new boolean[20][1000]);
 }

 private void generateFirstGeneration() {
 Random rnd = new Random();
 for (int i = 0; i < 20; i++) {
 for (int j = 0; j < 1000; j++) {
 popln[i][j] = Math.abs(rnd.nextInt()) % 4 + 1;
 }
 }
 } // генерация первого поколения

 private void selection() {
 int[][] genomListOffsprings = new int[20][1000];
 Random rndd = new Random();
 switch (this.slctp) {
 case ROULETTE_WHEEL: {
 double[] wheel = new double[this.individualCount];
 wheel[0] = fitnes(0);// 1­ Значение ФитнессФункции для ого генома
 this.chosenchromosom[0] = 0;
 for (int i = 1; i < this.individualCount; i++) {
 wheel[i] = wheel[i ­ 1] + fitnes(i);// Значение

 i­ ФитнессФункции для ого генома
 this.chosenchromosom[i] = 0;
 }
 double all = wheel[this.individualCount ­ 1];

 for (int i = 0; i < this.individualCount; i++) {
 double index = Math.abs(rndd.nextFloat()) * all;
 int l = 0;
 int r = individualCount ­ 1;
 int c = 0;
 while (l < r) {
 c = (l + r) >> 1;
 if (index <= wheel[c]) {
 r = c;
 } else {
 l = c + 1;
 }
 }
 int a = l;
 index = Math.abs(rndd.nextFloat()) * all;

 l = 0;
 r = individualCount ­ 1;
 c = 0;
 while (l < r) {

 c = (l + r) >> 1;
 if (index <= wheel[c]) {
 r = c;
 } else {
 l = c + 1;
 }
 }
 this.chosenchromosom[l]++;
 this.chosenchromosom[a]++;
 genomListOffsprings[i] = this.crossing(l, a);
 }
 popln = genomListOffsprings;
 break;
 }
 case TOURNEY: {
 for (int i = 0; i < this.individualCount; i++) {
 int index1 = rndd.nextInt(individualCount);
 int index2 = rndd.nextInt(individualCount);
 int index3 = rndd.nextInt(individualCount);
 int index4 = rndd.nextInt(individualCount);
 double fr1 = fitnes(index1);
 double fr2 = fitnes(index2);
 index1 = (fr1 > fr2) ? index1 : index2;
 double fr3 = fitnes(index3);
 double fr4 = fitnes(index4);
 index2 = (fr3 > fr4) ? index3 : index4;
 genomListOffsprings[i] = this.crossing(index1, index2);
 }
 popln = genomListOffsprings;
 break;
 }
 case TRUNCATING: {
 this.sort();
 for (int i = 0; i < this.individualCount; i++) {
 genomListOffsprings[i] =
this.crossing((Math.abs(rndd.nextInt())) % 10, (Math.abs(rndd.nextInt())) % 10);
 }
 popln = genomListOffsprings;
 break;
 }
 default:
 break;

 }
 } // Процедура селекци

 private int[] crossing(int a, int b) {
 int[] vec = new int[1000];
 switch (crstp) {
 case ONE_ELEMENT_EXCHANGE: {
 for (int i = 0; i < genomLength; i++) {
 Random rndd = new Random();
 vec[i] = (rndd.nextBoolean()) ? popln[b][i] : popln[a][i];
 }
 break;
 }
 case ONE_POINT_RECOMBINATION: {
 Random rndd = new Random();
 int point = Math.abs(rndd.nextInt()) % genomLength;
 System.arraycopy(popln[a], 0, vec, 0, point);

 System.arraycopy(popln[b], point, vec, point, genomLength ­
point);
 break;
 }
 default:
 break;
 }

 //mutation
 Random rdd = new Random();
 for (int i = 0; i < 1000; i++) {
 vec[i] = (((Math.abs(rdd.nextInt())) % 1000) == 0) ?
(Math.abs(rdd.nextInt())) % 4 + 1 : vec[i];
 }
 return vec;
 } // Процедура скрещивания

 private double fitnes(int nmb) {

 double a, b, c, d;
 a = dst(crdnt[nmb][0], crdnt[nmb][1], 200, 200);
 b = dst(crdnt[nmb][0], crdnt[nmb][1], 800, 200);
 c = dst(crdnt[nmb][0], crdnt[nmb][1], 200, 800);
 d = dst(crdnt[nmb][0], crdnt[nmb][1], 800, 800);
 double originalftns = 600 ­ Math.abs(Math.min(Math.min(a, b),
Math.min(c, d)));
 orftn[nmb]=originalftns;
 double sumdij = 0.D;
 for (int i = 0; i < 20; i++) {
 sumdij += ((Math.abs(crdnt[nmb][0] ­ crdnt[i][0]) <= 25) &&
(Math.abs(crdnt[nmb][1] ­ crdnt[i][1]) <= 25) && (dst(crdnt[nmb][0], crdnt[nmb]
[1], crdnt[i][0], crdnt[i][1]) < 50)) ? 1 ­ dst(crdnt[nmb][0], crdnt[nmb][1],
crdnt[i][0], crdnt[i][1]) / 50 : 0;
 }
 return originalftns / sumdij;
 } // Фитнес функция

 private int dst(int x1, int y1, int x2, int y2) {
 return Math.abs(x1 ­ x2) + Math.abs(y1 ­ y2);
 }

 private double avgfitnes() {
 double ftns = 0.D;
 for (int i = 0; i < 20; i++) {
 ftns += this.ftnes[i];
 }
 return ftns / 20;
 } // Фитнес функция

 private void crdntdog() {
 for (int i = 0; i < 20; i++) {
 for (int j = 0; j < 1000; j++) {
 switch (popln[i][j]) {
 case 1: {
 crdnt[i][1] += (crdnt[i][1] == 1000) ? ­999 : 1;
 break;
 }
 case 2: {
 crdnt[i][1] ­= (crdnt[i][1] == 0) ? ­999 : 1;
 break;

 }
 case 3: {
 crdnt[i][0] += (crdnt[i][0] == 1000) ? ­999 : 1;
 break;
 }
 case 4: {
 crdnt[i][0] ­= (crdnt[i][0] == 0) ? ­999 : 1;
 break;
 }
 default: {
 System.out.print("ERROR!");
 break;
 }
 }
 }
 }
 }

 private void sort() {
 for (int i = 0; i < this.individualCount; i++) {
 ftnes[i] = fitnes(i);
 }
 for (int i = 0; i < this.individualCount; i++) {
 int[] amiba;
 amiba = new int[1000];
 amiba = popln[i];
 double fit = ftnes[i];
 double ft=orftn[i];
 int[] c = new int[2];
 c = crdnt[i];
 for (int j = i; j < this.individualCount; j++) {
 if (ftnes[j] < fit) {
 fit = ftnes[j];
 ft=orftn[j];
 amiba = popln[j];
 popln[j] = popln[i];
 popln[i] = amiba;
 ftnes[j] = ftnes[i];
 orftn[j]=orftn[i];
 ftnes[i] = fit;
 orftn[i]=ft;
 c = crdnt[j];
 crdnt[j] = crdnt[i];
 crdnt[i] = c;
 }
 }
 }
 }
}

public class SQUAREDOG extends JPanel {

 public GeneticAlgo p;

 public SQUAREDOG() {

 JFrame frame = new JFrame("SQUAREDOG");
 frame.setMinimumSize(new Dimension(1000, 1000));
 frame.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE);
 frame.getContentPane().add(this);

 frame.pack();
 Container c = frame.getContentPane();
 this.setLayout(new GridLayout(1000, 1));
 for (int i = 0; i < 1; i++) {
 this.add(new JLabel(" "));
 }
 JScrollPane jsp = new JScrollPane(this);
 c.add(jsp);
 frame.setSize(1000, 1000);
 frame.setVisible(true);
 p = new GeneticAlgo("TRUNCATING", "ONE_ELEMENT_EXCHANGE", this);
 p.run();
 //repaint();
 }

 @Override
 protected void paintComponent(Graphics g) {
 super.paintComponent(g);
 g.setColor(Color.orange);
 g.drawRect(0, 0, 1000, 1000);
 g.fillRect(200, 200, 15, 5);
 g.fillRect(200, 800, 15, 5);
 g.fillRect(800, 200, 15, 5);
 g.fillRect(800, 800, 15, 5);
 g.setColor(Color.red);
 for (int i = 0; i < 20; i++) {
 g.fillRect(p.crdnt[i][0], p.crdnt[i][1], 5, 5);
 }

 }

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) throws InterruptedException {
 SQUAREDOG d = new SQUAREDOG();

 // TODO code application logic here
 }

}

