3- Roma Rudsky

using System;

using System.Collections.Generic;

using System.Ling;
using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

class Dot

{

public List<double> chromo;
public double fit;
public Dot(List<double> chromo)

{

this.chromo

}

private double getFit(List<double> chromo)

double fit

double
chromo[i]);
fit +=

return fit;

}

using System;

temp = chromo[i]* chromo[i]

chromo;
fit = getFit(chromo);

chromo.Count;
for (int i=0;i<chromo.Count;i++)

temp;

using System.Collections.Generic;

using System.Linq;
using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

class Population

{

public List<Dot> dots;

public double theBestFit;
public double avarageFit;
public Population(List<Dot> dogs)

{
this.dots =

theBestFit
avarageFit

}
public double getTheBestFit(List<Dot> dogs)

{

dogs;

getTheBestFit(dogs);
getAvarageFit(dogs);

double bestFit =

for (int i

if (bestFit
bestFit

9;

v -

return bestFit;

public double getAvarageFit(List<Dot> dogs)

9999,
< dogs.Count; i++)
dogs[i].fit)

dogs[i].fit;

for (int i = 0; i < dogs.Count; i++)
avarageFit += dogs[i].fit;

{
double avarageFit = 0;
avarageFit /= dogs.Count;
return avarageFit;

}

using System;

using System.Collections.Generic;

using System.Ling;
using System.Text;
using System.Threading;

- Math.Cos(2 * Math.PI *



using System.Threading.Tasks;

namespace lab3_siit_

{
class GA

{

Random random;
List<Population> histor;
public GA()

{

random = new Random();

List<Dot> dots = new List<Dot>();

for (int 1 = 0; i < 20; i++)

{
List<double> chromo = new List<double>();
for (int j = 0; j < 20; j++)

chromo.Add(random.NextDouble() % 2 -1);
}
dots.Add(new Dot(chromo));

}
//Sorting by fit
for (int i = 0; i < dots.Count; i++)
{
for (int j = dots.Count - 1; j > i; j--)

if (dots[j].fit > dots[j - 1].fit)
{

Dot tempDot = dots[j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;

}
}
Population startPopulation = new Population(dots);
histor = new List<Population>();
histor.Add(startPopulation);
int k = 0;
while (!isReady(histor))

Thread.Sleep(10);
histor.Add(getNextPupulation(histor[k]));
k++;

}
i .
private Population getNextPupulation(Population parent)

{

List<Dot> childrenPopulationDots = new List<Dot>();

for (int 1 = 0; 1 < 10; i++)
{

List<Dot> childrenDots = getChildren(
parent.dots[random.Next() % 10 + 10],
parent.dots[random.Next() % 10 + 10]

)
childrenPopulationDots.AddRange(childrenDots);

}
//Sorting by fit
for (int i = 0; i < childrenPopulationDots.Count; i++)

{

for (int j = childrenPopulationDots.Count - 1; j > 1i; j--)

if (childrenPopulationDots[j].fit > childrenPopulationDots[j -
1].fit)

Dot tempDot = childrenPopulationDots[j];
childrenPopulationDots[j] = childrenPopulationDots[j - 1];
childrenPopulationDots[j - 1] = tempDot;

}
}
Population childrenPopulation = new Population(childrenPopulationDots);
return childrenPopulation;

}

Boolean isReady(List<Population> histor)

if (histor.Count < 100)
return false;



else

{

for (int i = histor.Count - 100; i < histor.Count; i++)

if (histor[histor.Count - 100].avarageFit != histor[i].avarageFit)
return false;

}

return true;
}
}
private List<Dot> getChildren(Dot father, Dot mother)
{

List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next()%20;
List<double> firstChromo = new List<double>();
List<double> secondChromo = new List<double>();
for (int j = 0; j < 20; j++)

if(j<pointCross)

firstChromo.Add(father.chromo[j]);
secondChromo.Add(mother.chromo[j]);
}

else

firstChromo.Add(mother.chromo[j]);
secondChromo.Add(father.chromo[j]);

}

childrenDots.Add(new Dot(firstChromo));
childrenDots.Add(new Dot (secondChromo));

//Mutation
for (int j = ©; j < childrenDots.Count; j++)

int prob = random.Next (0, 20);

if (prob == 7)
{

int number = random.Next(20);
childrenDots[j].chromo[number] = random.NextDouble() % 2 - 1;

}

return childrenDots;
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gen points fithess share fithess
1 [479, 539] 540 15.6

2 [[511, 433] 522 14.21052632
3 |[469, 523] 546 6.6

4 |[530, 464] 534 6

5  |[490, 462] 552 5.777777778
6 |[539,487] 548 5

7 |[492, 464] 556 4.561403509
8  |[526,474] 548 4.237288136
9 [[523,473] 550 4.210526316
10 [[515, 467] 552 4.090909091
11  [[533,503] 564 4047619048
12 [[514, 520] 566 3.928571429
13 |[524, 480] 556 3.913043478
14 |[533, 497] 564 3.695652174
15 [[522,512] 566 3.636363636
16  |[478,502] 576 3.396226415
17 |[505, 469] 564 3.265306122
18  [[492, 476] 568 3.25

19 |[504, 522] 574 1.86440678
20  |[509, 487] 578 1.86440678
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mid generation:

1 [734, 212] 78| 27.47368421
2 [730, 216] 86| 27.05263158
3 [742, 222] 80| 26.53061224
4 [739, 225] 86| 26.2244898
5 [738, 224] 86| 26.2244898
6 [740, 218] 78 26.1
7 [737, 227] 90| 26.02040816
8 [735, 227] 92| 25.91836735
9 [736, 218] 76 25.9
10 |[737,219] 82 25.9
11  |[738, 220] 82 25.9
12 |[736,218] 82 25.9
13 |[738, 220] 82 25.9
14 |[738, 220] 82 25.9
15 |[737,223] 80 ol
16 |[735,221] 86 25.7
17  |[732, 220] 88 25.6
18  |[732, 222] 90 29
19  |[732,222] 90 25.5
20 |[734, 224] 90 25.5




last generation:

1 [800, 200] 0 30
2 [800, 200] 0 30
3 [800, 200] 0 30
4 [798, 200] 2 29.9
5 [798, 200] 2 29.9
6 [801, 201] 2 29.9
7 [800, 202] 2 29.9
8 [799, 199] 2 29.9
9 [802, 200] 2 29.9
10 [797, 201] 4 29.8
11 [800, 196] 4 29.8
12 [801, 197] 4 29.8
13 [798, 198] 4 29.8
14 [803, 199] 4 29.8
15 [800, 196] 4 29.8
16 [799, 203] 4 29.8
17 [797, 199] 4 29.8
18 [796, 198] 6 29.7
19 [796, 196] 8 29.6
20 [797, 207] 6 29.5
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