
3- Roma Rudsky

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace lab3_siit_
{
 class Dot
 {
 public List<double> chromo;
 public double fit;
 public Dot(List<double> chromo)
 {
 this.chromo = chromo;
 fit = getFit(chromo);
 }
 private double getFit(List<double> chromo)
 {
 double fit = chromo.Count;
 for (int i=0;i<chromo.Count;i++)
 {
 double temp = chromo[i]* chromo[i] - Math.Cos(2 * Math.PI *
chromo[i]);
 fit += temp;
 }
 return fit;
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace lab3_siit_
{
 class Population
 {
 public List<Dot> dots;
 public double theBestFit;
 public double avarageFit;
 public Population(List<Dot> dogs)
 {
 this.dots = dogs;
 theBestFit = getTheBestFit(dogs);
 avarageFit = getAvarageFit(dogs);
 }
 public double getTheBestFit(List<Dot> dogs)
 {
 double bestFit = 9999;
 for (int i = 0; i < dogs.Count; i++)
 if (bestFit > dogs[i].fit)
 bestFit = dogs[i].fit;
 return bestFit;
 }
 public double getAvarageFit(List<Dot> dogs)
 {
 double avarageFit = 0;
 for (int i = 0; i < dogs.Count; i++)
 avarageFit += dogs[i].fit;
 avarageFit /= dogs.Count;
 return avarageFit;
 }
 }
}
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;

using System.Threading.Tasks;

namespace lab3_siit_
{
 class GA
 {
 Random random;
 List<Population> histor;
 public GA()
 {
 random = new Random();
 List<Dot> dots = new List<Dot>();
 for (int i = 0; i < 20; i++)
 {
 List<double> chromo = new List<double>();
 for (int j = 0; j < 20; j++)
 {
 chromo.Add(random.NextDouble() % 2 -1);
 }
 dots.Add(new Dot(chromo));
 }
 //Sorting by fit
 for (int i = 0; i < dots.Count; i++)
 {
 for (int j = dots.Count - 1; j > i; j--)
 {
 if (dots[j].fit > dots[j - 1].fit)
 {
 Dot tempDot = dots[j];
 dots[j] = dots[j - 1];
 dots[j - 1] = tempDot;
 }
 }
 }
 Population startPopulation = new Population(dots);
 histor = new List<Population>();
 histor.Add(startPopulation);
 int k = 0;
 while (!isReady(histor))
 {
 Thread.Sleep(10);
 histor.Add(getNextPupulation(histor[k]));
 k++;
 }
 }
 private Population getNextPupulation(Population parent)
 {
 List<Dot> childrenPopulationDots = new List<Dot>();

 for (int i = 0; i < 10; i++)
 {
 List<Dot> childrenDots = getChildren(
 parent.dots[random.Next() % 10 + 10],
 parent.dots[random.Next() % 10 + 10]
);
 childrenPopulationDots.AddRange(childrenDots);
 }
 //Sorting by fit
 for (int i = 0; i < childrenPopulationDots.Count; i++)
 {
 for (int j = childrenPopulationDots.Count - 1; j > i; j--)
 {
 if (childrenPopulationDots[j].fit > childrenPopulationDots[j -
1].fit)
 {
 Dot tempDot = childrenPopulationDots[j];
 childrenPopulationDots[j] = childrenPopulationDots[j - 1];
 childrenPopulationDots[j - 1] = tempDot;
 }
 }
 }
 Population childrenPopulation = new Population(childrenPopulationDots);
 return childrenPopulation;
 }

 Boolean isReady(List<Population> histor)
 {
 if (histor.Count < 100)
 return false;

 else
 {
 for (int i = histor.Count - 100; i < histor.Count; i++)
 {
 if (histor[histor.Count - 100].avarageFit != histor[i].avarageFit)
 return false;
 }
 return true;
 }
 }
 private List<Dot> getChildren(Dot father, Dot mother)
 {
 List<Dot> childrenDots = new List<Dot>();
 int pointCross = random.Next()%20;
 List<double> firstChromo = new List<double>();
 List<double> secondChromo = new List<double>();
 for (int j = 0; j < 20; j++)
 {
 if(j<pointCross)
 {
 firstChromo.Add(father.chromo[j]);
 secondChromo.Add(mother.chromo[j]);
 }
 else
 {
 firstChromo.Add(mother.chromo[j]);
 secondChromo.Add(father.chromo[j]);
 }
 }

 childrenDots.Add(new Dot(firstChromo));
 childrenDots.Add(new Dot(secondChromo));

 //Mutation
 for (int j = 0; j < childrenDots.Count; j++)
 {
 int prob = random.Next(0, 20);
 if (prob == 7)
 {
 int number = random.Next(20);
 childrenDots[j].chromo[number] = random.NextDouble() % 2 - 1;
 }
 }
 return childrenDots;
 }
 }
}

Share fitness vs generation

0

10

20

30

40

50

60

70

80

90

100

fitness vs generation

0

150

300

450

600

main-title

mid generation:

last generation:

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

