3- Roma Rudsky

using System;

using System.Collections.Generic;

using System.Ling;
using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

class Dot

{

public List<double> chromo;
public double fit;
public Dot(List<double> chromo)

{

this.chromo

}

private double getFit(List<double> chromo)

double fit

double
chromo[i]);
fit +=

return fit;

}

using System;

temp = chromo[i]* chromo[i]

chromo;
fit = getFit(chromo);

chromo.Count;
for (int i=0;i<chromo.Count;i++)

temp;

using System.Collections.Generic;

using System.Linq;
using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_

{

class Population

{

public List<Dot> dots;

public double theBestFit;
public double avarageFit;
public Population(List<Dot> dogs)

{
this.dots =

theBestFit
avarageFit

}
public double getTheBestFit(List<Dot> dogs)

{

dogs;

getTheBestFit(dogs);
getAvarageFit(dogs);

double bestFit =

for (int i

if (bestFit
bestFit

9;

v -

return bestFit;

public double getAvarageFit(List<Dot> dogs)

9999,
< dogs.Count; i++)
dogs[i].fit)

dogs[i].fit;

for (int i = 0; i < dogs.Count; i++)
avarageFit += dogs[i].fit;

{
double avarageFit = 0;
avarageFit /= dogs.Count;
return avarageFit;

}

using System;

using System.Collections.Generic;

using System.Ling;
using System.Text;
using System.Threading;

- Math.Cos(2 * Math.PI *

using System.Threading.Tasks;

namespace lab3_siit_

{
class GA

{

Random random;
List<Population> histor;
public GA()

{

random = new Random();

List<Dot> dots = new List<Dot>();

for (int 1 = 0; i < 20; i++)

{
List<double> chromo = new List<double>();
for (int j = 0; j < 20; j++)

chromo.Add(random.NextDouble() % 2 -1);
}
dots.Add(new Dot(chromo));

}
//Sorting by fit
for (int i = 0; i < dots.Count; i++)
{
for (int j = dots.Count - 1; j > i; j--)

if (dots[j].fit > dots[j - 1].fit)
{

Dot tempDot = dots[j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;

}
}
Population startPopulation = new Population(dots);
histor = new List<Population>();
histor.Add(startPopulation);
int k = 0;
while (!isReady(histor))

Thread.Sleep(10);
histor.Add(getNextPupulation(histor[k]));
k++;

}
i .
private Population getNextPupulation(Population parent)

{

List<Dot> childrenPopulationDots = new List<Dot>();

for (int 1 = 0; 1 < 10; i++)
{

List<Dot> childrenDots = getChildren(
parent.dots[random.Next() % 10 + 10],
parent.dots[random.Next() % 10 + 10]

)
childrenPopulationDots.AddRange(childrenDots);

}
//Sorting by fit
for (int i = 0; i < childrenPopulationDots.Count; i++)

{

for (int j = childrenPopulationDots.Count - 1; j > 1i; j--)

if (childrenPopulationDots[j].fit > childrenPopulationDots[j -
1].fit)

Dot tempDot = childrenPopulationDots[j];
childrenPopulationDots[j] = childrenPopulationDots[j - 1];
childrenPopulationDots[j - 1] = tempDot;

}
}
Population childrenPopulation = new Population(childrenPopulationDots);
return childrenPopulation;

}

Boolean isReady(List<Population> histor)

if (histor.Count < 100)
return false;

else

{

for (int i = histor.Count - 100; i < histor.Count; i++)

if (histor[histor.Count - 100].avarageFit != histor[i].avarageFit)
return false;

}

return true;
}
}
private List<Dot> getChildren(Dot father, Dot mother)
{

List<Dot> childrenDots = new List<Dot>();
int pointCross = random.Next()%20;
List<double> firstChromo = new List<double>();
List<double> secondChromo = new List<double>();
for (int j = 0; j < 20; j++)

if(j<pointCross)

firstChromo.Add(father.chromo[j]);
secondChromo.Add(mother.chromo[j]);
}

else

firstChromo.Add(mother.chromo[j]);
secondChromo.Add(father.chromo[j]);

}

childrenDots.Add(new Dot(firstChromo));
childrenDots.Add(new Dot (secondChromo));

//Mutation
for (int j = ©; j < childrenDots.Count; j++)

int prob = random.Next (0, 20);

if (prob == 7)
{

int number = random.Next(20);
childrenDots[j].chromo[number] = random.NextDouble() % 2 - 1;

}

return childrenDots;

Share fitness vs generation

100
90
80
70
60
50
40
30
20
10

0

VA A% D 10 D (K D A0 A D % AD O L AD D (D O) (D ;D O DD AL
5 AT NI A0 A A0V A 2 W SOV (7 (9 @OAVADAD e S 7)

600

450

300

150

iz ,,)‘b

o v
\/,\y,\/‘b

fitness vs generation

main-title

o ’lx‘b
fb’L

,,)b‘,\Q Q)b’:[/,\‘b

o

>
A S AAS RO

gen points fithess share fithess
1 [479, 539] 540 15.6

2 [[511, 433] 522 14.21052632
3 |[469, 523] 546 6.6

4 |[530, 464] 534 6

5 |[490, 462] 552 5.777777778
6 |[539,487] 548 5

7 |[492, 464] 556 4.561403509
8 |[526,474] 548 4.237288136
9 [[523,473] 550 4.210526316
10 [[515, 467] 552 4.090909091
11 [[533,503] 564 4047619048
12 [[514, 520] 566 3.928571429
13 |[524, 480] 556 3.913043478
14 |[533, 497] 564 3.695652174
15 [[522,512] 566 3.636363636
16 |[478,502] 576 3.396226415
17 |[505, 469] 564 3.265306122
18 [[492, 476] 568 3.25

19 |[504, 522] 574 1.86440678
20 |[509, 487] 578 1.86440678

'b° é’ &q'b A

mid generation:

1 [734, 212] 78| 27.47368421
2 [730, 216] 86| 27.05263158
3 [742, 222] 80| 26.53061224
4 [739, 225] 86| 26.2244898
5 [738, 224] 86| 26.2244898
6 [740, 218] 78 26.1
7 [737, 227] 90| 26.02040816
8 [735, 227] 92| 25.91836735
9 [736, 218] 76 25.9
10 |[737,219] 82 25.9
11 |[738, 220] 82 25.9
12 |[736,218] 82 25.9
13 |[738, 220] 82 25.9
14 |[738, 220] 82 25.9
15 |[737,223] 80 ol
16 |[735,221] 86 25.7
17 |[732, 220] 88 25.6
18 |[732, 222] 90 29
19 |[732,222] 90 25.5
20 |[734, 224] 90 25.5

last generation:

1 [800, 200] 0 30
2 [800, 200] 0 30
3 [800, 200] 0 30
4 [798, 200] 2 29.9
5 [798, 200] 2 29.9
6 [801, 201] 2 29.9
7 [800, 202] 2 29.9
8 [799, 199] 2 29.9
9 [802, 200] 2 29.9
10 [797, 201] 4 29.8
11 [800, 196] 4 29.8
12 [801, 197] 4 29.8
13 [798, 198] 4 29.8
14 [803, 199] 4 29.8
15 [800, 196] 4 29.8
16 [799, 203] 4 29.8
17 [797, 199] 4 29.8
18 [796, 198] 6 29.7
19 [796, 196] 8 29.6
20 [797, 207] 6 29.5

900

800

700

600

500

400

300

200

100

100

200 300

400

'rl-

500

600

700

800

900

900

800

700

600

500

400

300

200

100

100

900

800

700

600

500

400

300

200

100

100

200

200

300

300

400

400

500

500

600

600

700

700

800

800

900

900

900

800

700

600

500

400

300

200

100

900

800

700

600

500

400

300

200

100

100

100

200

200

300

300

400

400

500

500

600

600

700

700

800

800

900

900

