MINISTRY OF EDUCATION REPUBLIC OF BELARUS
ESTABLISHMENT OF EDUCATION
"BREST STATE TECHNICHNICAL UNIVERSITY™"

Practice work Ne3
«Evolutionary Computationy
Subject: «Lucky Dog Problem with Fithess Sharing Algorithmy

Made by:

Alexey Cherkasov
Checked by:

Pr. Akira Imada

2016

We should:

1. Create a population of N chromosomes of 1000 genes each of whose
values is 1, 2, 3 or 4. Chromosome represents 1000 steps of one dog.
2. Assuming fitness being {600 - distance to the nearest sausage}, apply Fitness

Sharing Algorithm with sigma=5

3. Show the table of original and shared fitness in 5 generations, graph of fitness vs
generation of highest fitness dogs and routes of highest dogs in 5 generations

20 dogs, 4 sausages

Tables of original and shared fitness in 5 different generations:

Generation 1:

Original
DogNe fitness | Shared fitness
1 584 32,4444444444444
2 580 34,1176470588235
3 588 36,75
4 590 36,875
5 576 38,4
6 562 40,1428571428571
7 562 40,1428571428571
8 564 40,2857142857143
9 570 40,7142857142857
10 566 43,5384615384615
11 574 44,1538461538462
12 576 44,3076923076923
13 578 48,1666666666667
14 580 48,3333333333333
15 562 51,0909090909091
16 566 51,4545454545455
17 554 61,5555555555556
18 558 62
19 538 67,25
20 532 106,4

Generation 2:

Original | Shared
DogNe fitness | fitness
1 320 16
2 324 16,2
3 324 16,2
4 324 16,2
5 326 16,3
6 326 16,3
7 328 16,4
8 328 16,4
9 328 16,4
10 328 16,4
11 328 16,4
12 328 16,4
13 328 16,4
14 330 16,5

15 330 16,5
16 330 16,5
17 332 16,6
18 332 16,6
19 332 16,6
20 332 16,6
Generation 100:
Original | Shared
DogNe fitness | fitness
1 190 9,5
2 190 9,5
3 192 9,6
4 192 9,6
5 192 9,6
6 194 9,7
7 194 9,7
8 196 9,8
9 196 9,8
10 198 9,9
11 198 9,9
12 198 9,9
13 198 9,9
14 198 9,9
15 198 9,9
16 200 10
17 200 10
18 200 10
19 200 10
20 204 10,2

Generation 150:

Original | Shared

DogNe fitness | fitness
1 90 4,5
2 90 4,5
3 90 4,5
4 90 4,5
5 92 4,6
6 92 4,6
7 92 4,6
8 92 4,6
9 92 4,6
10 94 4,7
11 94 4,7
12 9 4,7
13 96 4,8
14 96 4,8
15 96 4,8
16 96 4,8
17 98 4,9
18 98 4,9
19 100 5
20 102 51

Generation 267:

Original | Shared

DogNe fitness fitness
1 0 0
2 2 0,1
3 2 0,1
4 2 0,1
5 2 0,1
6 2 0,1
7 2 0,1
8 2 0,1
9 2 0,1
10 2 0,1
11 2 0,1
12 2 0,1
13 2 0,1
14 4 0,2
15 4 0,2
16 4 0,2
17 6 0,3
18 6 0,3
19 8 0,4
20 10 0,5

Graph of average and best fitness vs generation:

6001

sso4 |

004+ R

450

400

3501

2004

1504

1004

304

| Best fitness
B Average fitness

generation

: : | i : : :
50 100 150 200 250 300 350 400

The route of highest fitness dogs in the 1st generations, three intermediate
generations, and the final generation:

Generation 1:

Sausage Sausage
Start
Sausage
Sausage

Generation 50:

Sausage Sausage

Start

Sausage

Sausage

Generation 100:

Sausage Sausage

Start

Sausage

Sausage

Generation 150:

Sausage Sausage
Start
Sausage
Sausage

Generation 267:

Sausage Sausage
Start
Sausage
Sausage

Explanation of the program and results:

In our program we have 20 dogs and 4 sausages, at the last generation all
dogs should find a sausage, but the best dog that first find a sausage shares fitness
only with nearest dogs, so all dogs go to one direction, to the same sausage, so the
task that 20 dogs should go to different sausages can’t be executed.

Program Code(C++):

#include <iostream>
#tinclude <Windows.h>
ttinclude <vector>
#include <math.h>
#include <fstream>
#include "time.h"

using namespace std;

void NextG(int mas1[20][1000], int mas2[20][1000]);

void Mut(int mas1[20][1000]);

void Fit(int mas1[20][1000], int F[20]);

void OutCord(int mas[20][1000], int m, int c[20][2]);

void Sh_fit_sort(int mas1[20][1000], int c[20][2], int f[20], int F[20]);

void OutBCAF(vector<int> bc, vector<int> af);

int main()

{
ofstream foutX("Xways.txt"); //making file of X cordinates
ofstream foutY("Yways.txt"); //making file of Y cordinates

srand(time(NULL));

vector<int> bg; //

vector<int> af;

int ch[20][1000];

int child[20][1000];

int F[20];

int f[20]; //massive shared fitness of chromosom
int c[20][2]; //finish cordinates

intyl=0,g=1;

for (inti=0;i<20;i++) //input 1-st generation

{
for (int f = 0; f < 1000; f++)
{
chlil[fl =rand() % 4 + 1;
}
}
Fit(ch, F);

Sh_fit_sort(ch, c, f, F);
OutCord(ch, 0, c);
bc.push_back(f[0]); //calculating best and average fitness of generation

yl1=0;
for (inti=0;i<20;i++)
{

vyl =yl +f[i];
}

af.push_back(y1 / 20);
cout << bc[0] <<''; //display fitnes of best chromosom

for (int end = 0; end == 0;)

{
// 1
NextG(ch, child);
Mut(child);
Fit(child, F);
Sh_fit_sort(child, c, f, F);
OutCord(child, g, c);
bc.push_back(f[0]); //calculating best and average fitness of generation 1
yl1=0;
for (inti=0;i<20; i++)
{
y1=yl+f[i];
}
af.push_back(y1 / 20);
cout << bc[g] <<'"'; //display fitnes of best chromosom 1
if (bc[g] == 0) end = 1; //stoping 1
g+t
// 2
if (end == 0) {
NextG(child, ch);
Mut(ch);
Fit(ch, F);
Sh_fit_sort(ch, c, f, F);
OutCord(ch, g, c);
bc.push_back(f[0]); //calculating best and average fitness of generation 2
yl=0;
for (inti=0;i<20;i++)
{
y1 =yl +fi];
}
af.push_back(y1 / 20);
cout << bc[g] <<'"; //display fitnes of best chromosom 2
if (bc[g] == 0) end = 1; //stoping 2
g+t
}
}

OutBCAF(bc, af);

std::cout << "(To see more information, check text files: BC.txt, AF.txt, GEN.txt, Xways.txt, Yways.txt)" << end| << end|;
foutX << endl;

foutY << endl;

system("pause");

return O;

}

void NextG(int mas1[20][1000], int mas2[20][1000])
{

srand(time(NULL));

int x1, x2, e;

for (ints=0; s < 20; s++)

{

x1 =rand() % 10;
x2 =rand() % 10;
for (inti=0;i<1000; i++) //uniform crossover

{
e=rand() % 2;
if (e == 1) { mas2[s][i] = mas1[x1][i]; }
else { mas2[s][i] = mas1[x2][i]; }
}
}
}
void Mut(int mas1[20][1000])
{
srand(time(NULL));
for (inti=0;i<20;i++)
{
for (int f = 0; f < 1000; f++)
{
int mut = rand() % 20;
if (mut ==2) {
masl[i][f] =rand() % 4 + 1;
}
}
}
}
void Fit(int mas1[20][1000], int F[20])
{
int X1=500,Y1=500,x1=0,y1=0,x2=0,y2=0,x3=0,y3=0,x4=0,y4=0, f1, f2, {3, f4;
for (inti=0;i<20;i++)
{
Fli]=1;
X1 =500;
Y1 =500;
for (int f = 0; f < 1000; f++) // dog is moving 1
{
switch (mas1[i][f])
{
case 1: {Y1=Y1+1; break; }
case 2: {Y1=Y1-1; break; }
case 3: { X1 = X1+ 1; break; }
case 4: { X1 =X1-1; break; }
default: cout << "error" << end|;
}
if (X1==1001){X1=0;}
if (X1 ==-1) { X1 =1000; }
if (Y1==1001){Y1=0;}
if (Y1==-1){Y1=1000;}
if (X1 ==200 && Y1 ==200) { F[i]=0;} //if dog find sausage 1
if (X1 == 200 && Y1 ==800) { F[i] =0;} //if dog find sausage 2
if (X1 == 800 && Y1 ==800) { F[i] =0;} //if dog find sausage 3
if (X1 == 800 && Y1 ==200) { F[i] =0;} //if dog find sausage 4
}
if (F[i] = 10)
{
x1 =200 - X1;
y1=200-Y1;
x2 =200 - X1;
y2=800-Y1;
x3 =800 - X1;
y3=800-Y1;
x4 =800 - X1;
y4=200-Y1;
f1 = fabs(x1) + fabs(y1);
f2 = fabs(x2) + fabs(y2);
f3 = fabs(x3) + fabs(y3);
f4 = fabs(x4) + fabs(y4);
if (f1 <= f2 && f1 <=f3 && f1 <=f4) F[i] = f1;
if (f2 <=f1 && f2 <=3 && 2 <=f4) F[i] = f2;
if (f3 <=2 && 3 <= f1 && f3 <= f4) F[i] = f3;
if (f4 <= f2 && f4 <=3 && f4 <=f1) F[i] = f4;
}
}
1

void OutCord(int mas[20][1000], int m, int c[20][2])

{
ofstream foutX("Xways.txt", ios_base::app); //making file of X cordinates
ofstream foutY("Yways.txt", ios_base::app); //making file of Y cordinates
int X1 =500, Y1 = 500;
foutX << "-" <<m + 1 << Moo m e " << endl;
foutY <<"-"<<m + 1 << " <<endl;

for (inti=0;i<20;i++)

{

foutX <<i+1<<"////" << endl;
foutY <<i+1<<"///]" << endl;

X1 = 500;
Y1 = 500;

for (int f = 0; f < 1000; f++) // dog is moving 1

{

}

switch (masl[i][f])

{

case 1: { Y1 =Y1 + 1; break; }
case 2: {Y1=Y1-1; break; }
case 3: { X1 = X1 + 1; break; }
case 4: { X1 = X1 - 1; break; }
default: cout << "error" << end|;
}

foutX << X1 << endl;

foutY << Y1 << endl;

clil[1] = X1;

clill2] =Y1;

foutX << endl;
foutY << endl;

