

MINISTRY OF EDUCATION REPUBLIC OF BELARUS

ESTABLISHMENT OF EDUCATION

"BREST STATE TECHNICHNICAL UNIVERSITY"

Practice work №3

 «Evolutionary Computation»

Subject: «Lucky Dog Problem with Fithess Sharing Algorithm»

 Made by:

 Alexey Cherkasov

 Checked by:

 Pr. Akira Imada

2016

We should:

1. Create a population of N chromosomes of 1000 genes each of whose

values is 1, 2, 3 or 4. Chromosome represents 1000 steps of one dog.

2. Assuming fitness being {600 - distance to the nearest sausage}, apply Fitness

Sharing Algorithm with sigma= 5

3. Show the table of original and shared fitness in 5 generations, graph of fitness vs

generation of highest fitness dogs and routes of highest dogs in 5 generations

20 dogs, 4 sausages

Tables of original and shared fitness in 5 different generations:

Generation 1:

Dog№
Original
fitness Shared fitness

1 584 32,4444444444444

2 580 34,1176470588235

3 588 36,75

4 590 36,875

5 576 38,4

6 562 40,1428571428571

7 562 40,1428571428571

8 564 40,2857142857143

9 570 40,7142857142857

10 566 43,5384615384615

11 574 44,1538461538462

12 576 44,3076923076923

13 578 48,1666666666667

14 580 48,3333333333333

15 562 51,0909090909091

16 566 51,4545454545455

17 554 61,5555555555556

18 558 62

19 538 67,25

20 532 106,4

Generation 2:

Dog№
Original
fitness

Shared
fitness

1 320 16

2 324 16,2

3 324 16,2

4 324 16,2

5 326 16,3

6 326 16,3

7 328 16,4

8 328 16,4

9 328 16,4

10 328 16,4

11 328 16,4

12 328 16,4

13 328 16,4

14 330 16,5

15 330 16,5

16 330 16,5

17 332 16,6

18 332 16,6

19 332 16,6

20 332 16,6

Generation 100:

Dog№
Original
fitness

Shared
fitness

1 190 9,5

2 190 9,5

3 192 9,6

4 192 9,6

5 192 9,6

6 194 9,7

7 194 9,7

8 196 9,8

9 196 9,8

10 198 9,9

11 198 9,9

12 198 9,9

13 198 9,9

14 198 9,9

15 198 9,9

16 200 10

17 200 10

18 200 10

19 200 10

20 204 10,2

Generation 150:

Dog№
Original
fitness

Shared
fitness

1 90 4,5

2 90 4,5

3 90 4,5

4 90 4,5

5 92 4,6

6 92 4,6

7 92 4,6

8 92 4,6

9 92 4,6

10 94 4,7

11 94 4,7

12 94 4,7

13 96 4,8

14 96 4,8

15 96 4,8

16 96 4,8

17 98 4,9

18 98 4,9

19 100 5

20 102 5,1

Generation 267:

Dog№
Original
fitness

Shared
fitness

1 0 0

2 2 0,1

3 2 0,1

4 2 0,1

5 2 0,1

6 2 0,1

7 2 0,1

8 2 0,1

9 2 0,1

10 2 0,1

11 2 0,1

12 2 0,1

13 2 0,1

14 4 0,2

15 4 0,2

16 4 0,2

17 6 0,3

18 6 0,3

19 8 0,4

20 10 0,5

Graph of average and best fitness vs generation:

The route of highest fitness dogs in the 1st generations, three intermediate

generations, and the final generation:

Generation 1:

Generation 50:

Generation 100:

Generation 150:

Generation 267:

Explanation of the program and results:

In our program we have 20 dogs and 4 sausages, at the last generation all

dogs should find a sausage, but the best dog that first find a sausage shares fitness

only with nearest dogs, so all dogs go to one direction, to the same sausage, so the

task that 20 dogs should go to different sausages can’t be executed.

Program Code(C++):

#include <iostream>
#include <Windows.h>
#include <vector>
#include <math.h>
#include <fstream>
#include "time.h"

using namespace std;

void NextG(int mas1[20][1000], int mas2[20][1000]);
void Mut(int mas1[20][1000]);
void Fit(int mas1[20][1000], int F[20]);
void OutCord(int mas[20][1000], int m, int c[20][2]);
void Sh_fit_sort(int mas1[20][1000], int c[20][2], int f[20], int F[20]);
void OutBCAF(vector<int> bc, vector<int> af);
int main()
{
 ofstream foutX("Xways.txt"); //making file of X cordinates
 ofstream foutY("Yways.txt"); //making file of Y cordinates

 srand(time(NULL));
 vector<int> bc; //
 vector<int> af;
 int ch[20][1000];
 int child[20][1000];
 int F[20];
 int f[20]; //massive shared fitness of chromosom
 int c[20][2]; //finish cordinates

 int y1 = 0, g = 1;

 for (int i = 0; i < 20; i++) //input 1-st generation
 {
 for (int f = 0; f < 1000; f++)
 {
 ch[i][f] = rand() % 4 + 1;
 }
 }
 Fit(ch, F);
 Sh_fit_sort(ch, c, f, F);
 OutCord(ch, 0, c);
 bc.push_back(f[0]); //calculating best and average fitness of generation
 y1 = 0;
 for (int i = 0; i < 20; i++)
 {
 y1 = y1 + f[i];
 }
 af.push_back(y1 / 20);
 cout << bc[0] << ' '; //display fitnes of best chromosom

 for (int end = 0; end == 0;)
 {
 //---1
 NextG(ch, child);
 Mut(child);
 Fit(child, F);
 Sh_fit_sort(child, c, f, F);
 OutCord(child, g, c);
 bc.push_back(f[0]); //calculating best and average fitness of generation 1
 y1 = 0;
 for (int i = 0; i < 20; i++)
 {
 y1 = y1 + f[i];
 }
 af.push_back(y1 / 20);
 cout << bc[g] << ' '; //display fitnes of best chromosom 1
 if (bc[g] == 0) end = 1; //stoping 1
 g++;
 //---2
 if (end == 0) {
 NextG(child, ch);
 Mut(ch);
 Fit(ch, F);
 Sh_fit_sort(ch, c, f, F);
 OutCord(ch, g, c);
 bc.push_back(f[0]); //calculating best and average fitness of generation 2
 y1 = 0;
 for (int i = 0; i < 20; i++)
 {
 y1 = y1 + f[i];
 }
 af.push_back(y1 / 20);
 cout << bc[g] << ' '; //display fitnes of best chromosom 2
 if (bc[g] == 0) end = 1; //stoping 2
 g++;
 }
 }
 OutBCAF(bc, af);

 std::cout << "(To see more information, check text files: BC.txt, AF.txt, GEN.txt, Xways.txt, Yways.txt)" << endl << endl;
 foutX << endl;
 foutY << endl;
 system("pause");
 return 0;
}

void NextG(int mas1[20][1000], int mas2[20][1000])
{
 srand(time(NULL));
 int x1, x2, e;
 for (int s = 0; s < 20; s++)
 {

 x1 = rand() % 10;
 x2 = rand() % 10;
 for (int i = 0; i < 1000; i++) //uniform crossover
 {
 e = rand() % 2;
 if (e == 1) { mas2[s][i] = mas1[x1][i]; }
 else { mas2[s][i] = mas1[x2][i]; }
 }
 }
}

void Mut(int mas1[20][1000])
{
 srand(time(NULL));
 for (int i = 0; i < 20; i++)
 {
 for (int f = 0; f < 1000; f++)
 {
 int mut = rand() % 20;
 if (mut == 2) {
 mas1[i][f] = rand() % 4 + 1;
 }
 }
 }
}

void Fit(int mas1[20][1000], int F[20])
{
 int X1 = 500, Y1 = 500, x1 = 0, y1 = 0, x2 = 0, y2 = 0, x3 = 0, y3 = 0, x4 = 0, y4 = 0, f1, f2, f3, f4;
 for (int i = 0; i < 20; i++)
 {
 F[i] = 1;
 X1 = 500;
 Y1 = 500;
 for (int f = 0; f < 1000; f++) // dog is moving 1
 {
 switch (mas1[i][f])
 {
 case 1: { Y1 = Y1 + 1; break; }
 case 2: { Y1 = Y1 - 1; break; }
 case 3: { X1 = X1 + 1; break; }
 case 4: { X1 = X1 - 1; break; }
 default: cout << "error" << endl;
 }
 if (X1 == 1001) { X1 = 0; }
 if (X1 == -1) { X1 = 1000; }
 if (Y1 == 1001) { Y1 = 0; }
 if (Y1 == -1) { Y1 = 1000; }
 if (X1 == 200 && Y1 == 200) { F[i] = 0; } // if dog find sausage 1
 if (X1 == 200 && Y1 == 800) { F[i] = 0; } // if dog find sausage 2
 if (X1 == 800 && Y1 == 800) { F[i] = 0; } // if dog find sausage 3
 if (X1 == 800 && Y1 == 200) { F[i] = 0; } // if dog find sausage 4
 }
 if (F[i] = !0)
 {
 x1 = 200 - X1;
 y1 = 200 - Y1;
 x2 = 200 - X1;
 y2 = 800 - Y1;
 x3 = 800 - X1;
 y3 = 800 - Y1;
 x4 = 800 - X1;
 y4 = 200 - Y1;
 f1 = fabs(x1) + fabs(y1);
 f2 = fabs(x2) + fabs(y2);
 f3 = fabs(x3) + fabs(y3);
 f4 = fabs(x4) + fabs(y4);
 if (f1 <= f2 && f1 <= f3 && f1 <= f4) F[i] = f1;
 if (f2 <= f1 && f2 <= f3 && f2 <= f4) F[i] = f2;
 if (f3 <= f2 && f3 <= f1 && f3 <= f4) F[i] = f3;
 if (f4 <= f2 && f4 <= f3 && f4 <= f1) F[i] = f4;
 }
 }
}

void OutCord(int mas[20][1000], int m, int c[20][2])
{
 ofstream foutX("Xways.txt", ios_base::app); //making file of X cordinates
 ofstream foutY("Yways.txt", ios_base::app); //making file of Y cordinates
 int X1 = 500, Y1 = 500;
 foutX << "-" << m + 1 << "----------------------------" << endl;
 foutY << "-" << m + 1 << "----------------------------" << endl;

 for (int i = 0; i < 20; i++)
 {
 foutX << i + 1 << "////" << endl;
 foutY << i + 1 << "////" << endl;
 X1 = 500;
 Y1 = 500;

 for (int f = 0; f < 1000; f++) // dog is moving 1
 {
 switch (mas[i][f])
 {
 case 1: { Y1 = Y1 + 1; break; }
 case 2: { Y1 = Y1 - 1; break; }
 case 3: { X1 = X1 + 1; break; }
 case 4: { X1 = X1 - 1; break; }
 default: cout << "error" << endl;
 }
 foutX << X1 << endl;
 foutY << Y1 << endl;
 c[i][1] = X1;
 c[i][2] = Y1;
 }
 foutX << endl;
 foutY << endl;
 }
}

