
DENIS RAMSKIY II 11

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LakyDog
{
 public class Gen
 {
 private List<int> hromosom;
 private double fitness;
 private double shfitness;
 private const int max=1000;

 public Gen(Random rnd,Points mypnt)
 {
 shfitness = 0;
 hromosom = new List<int>();
 for (int i = 0; i < max; i++)
 hromosom.Add(rnd.Next() % 4);
 fitness = calcFit(mypnt);
 }
 public Gen(Gen obj)
 {
 this.hromosom = new List<int>();
 for (int i = 0; i < max; i++)
 this.hromosom.Add(obj.get()[i]);
 this.fitness = obj.get_fitness();
 this.shfitness = obj.get_shfitness();
 }
 public Gen(List<int> obj, Points mypnt)
 {
 shfitness = 0;
 this.hromosom = new List<int>();
 for (int i = 0; i < max; i++)
 this.hromosom.Add(obj[i]);
 fitness = calcFit(mypnt);
 }
 public void mutation(Random rnd)
 {
 for (int i = 0; i < max; i++)
 if (rnd.Next() % 1000 < 2)
 hromosom[i] = rnd.Next() % 4;
 }
 private int calcFit(Points mypnt)
 {
 int result = 1000;
 for (int i = 0; i < mypnt.getCount(); i++)
 {
 int temp1 = Math.Abs(mypnt.getPoint(i).getPoints()[0] - corOfEnd()[0]);
 int temp2 = Math.Abs(mypnt.getPoint(i).getPoints()[1] - corOfEnd()[1]);
 if (temp1 + temp2 < result)
 result = temp1 + temp2;
 }

 return result;
 }
 static public Gen operator +(Gen obj1, Gen obj2)
 {
 obj1.get().Clear();
 for (int i = 0; i < max; i++)
 obj1.get().Add(obj2.get()[i]);
 obj1.set_fitness(obj2.get_fitness());
 obj1.set_shfitness(obj2.get_shfitness());
 return obj1;
 }

 public List<int> get()
 {
 return hromosom;
 }
 public double get_fitness()
 {
 return fitness;
 }
 public void set_fitness(double a)
 {
 this.fitness = a;
 }
 public double get_shfitness()
 {
 return shfitness;
 }
 public void set_shfitness(double a)
 {
 this.shfitness = a;
 }
 public List<int> corOfEnd()
 {
 List<int> temp = new List<int>();
 int x = 500, y = 500;
 for (int i = 0; i < max; i++)
 {
 switch (hromosom[i])
 {
 case 0: x--; break;
 case 1: x++; break;
 case 2: y++; break;
 case 3: y--; break;
 }
 }
 temp.Add(x);
 temp.Add(y);

 return temp;
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LakyDog
{
 public class Generation
 {
 private List<Gen> generation;
 private double fitness;
 private double shfitness;
 private const int max = 1000;

 public Generation(Random rnd, Points mypnt)
 {
 generation = new List<Gen>();
 for (int I = 0; I < 20; I++)
 {
 Gen temp = new Gen(rnd, mypnt);
 generation.Add(temp);
 fitness += (double)temp.get_fitness()/20;
 }

 for (int I = 0; I < 20; I++)

 {
 calcSherFitness(generation, generation[I]);
 shfitness += (double)generation[I].get_shfitness() / 20;
 }
 this.shsort();
 }
 public void shsort()
 {
 for (int i = 0; i < 20; i++)
 for (int j = 0; j < 19; j++)
 if (generation[j].get_shfitness() > generation[j + 1].get_shfitness())
 {
 Gen temp = new Gen(generation[j]);
 generation[j] += generation[j + 1];
 generation[j + 1] += temp;
 }
 }
 public List<Gen> get_parents(Random rnd)
 {
 List<Gen> TEMP = new List<Gen>();
 TEMP.Add(generation[rnd.Next() % 10]);
 TEMP.Add(generation[rnd.Next() % 10]);
 return TEMP;
 }
 public Gen get_child(Random rnd, List<Gen> par, Points mypnt)
 {
 List<int> TEMP = new List<int>();
 for (int i = 0; i < max; i++)
 if (rnd.Next() % 2 == 0)
 TEMP.Add(par[0].get()[i]);
 else
 TEMP.Add(par[1].get()[i]);

 Gen child = new Gen(TEMP, mypnt);
 child.mutation(rnd);

 return child;
 }
 public void calcSherFitness(List<Gen> generation,Gen obj)
 {
 double shFitness = 0;
 for (int i = 0; i < 20; i++)
 {
 int cor_1 = Math.Abs(obj.corOfEnd()[0] - generation[i].corOfEnd()[0]);
 int cor_2 = Math.Abs(obj.corOfEnd()[1] - generation[i].corOfEnd()[1]);
 if (cor_1 + cor_2 <= 50)
 shFitness += 1 - (cor_1 + cor_2)/50;
 }

 if (shFitness == 0)
 obj.set_shfitness(obj.get_fitness());
 else
 obj.set_shfitness(obj.get_fitness() / shFitness);
 }
 public void new_generation(Random rnd, Points mypnt, int generationCount)
 {
 List<Gen> ngeneration = new List<Gen>();
 double nfitness = 0;
 double nshfitness = 0;
 for (int i = 0; i < 20; i++)
 {
 ngeneration.Add(this.get_child(rnd, this.get_parents(rnd), mypnt));
 nfitness += (double)ngeneration[i].get_fitness()/20;
 }

 for (int i = 0; i < 20; i++)
 {
 calcSherFitness(ngeneration, ngeneration[i]);
 this.generation[i] += ngeneration[i];

 nshfitness += (double)ngeneration[i].get_shfitness() / 20;
 }
 this.fitness = nfitness;
 this.shfitness = nshfitness;

 this.shsort();
 }

 public double get_fitness()
 {
 return fitness;
 }
 public double get_shfitness()
 {
 return shfitness;
 }
 public List<Gen> get()
 {
 return generation;
 }
 public Gen get(int i)
 {
 return generation[i];
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace LakyDog
{
 public class Point
 {
 public int x;
 public int y;

 public Point(int a, int b)
 {
 x = a;
 y = b;
 }
 public List<int> getPoints()
 {
 List<int> temp = new List<int>();
 temp.Add(x);
 temp.Add(y);
 return temp;
 }
 }
 public class Points
 {
 private List<Point> list;

 public Points()
 {
 list = new List<Point>();
 list.Add(new Point(200, 200));
 list.Add(new Point(200, 800));
 list.Add(new Point(800, 200));
 list.Add(new Point(800, 800));
 }
 public int getCount()
 {
 return list.Count;
 }

 public Point getPoint(int i)
 {
 return list[i];
 }
 }
}

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.IO;

namespace LakyDog
{
 public partial class Form1 : Form
 {
 int generationCount;
 Random rnd ;
 Generation work ;
 Points wPoint;
 public Form1()
 {
 InitializeComponent();
 generationCount = 0;
 wPoint = new Points();
 rnd = new Random(DateTime.Now.Millisecond);
 work = new Generation(rnd, wPoint);
 pictureBox1.SizeMode = PictureBoxSizeMode.StretchImage;
 File.WriteAllText("shFitnessBest.txt","");
 File.WriteAllText("shFitnessAverege.txt", "");
 File.WriteAllText("FitnessBest.txt", "");
 File.WriteAllText("FitnessAverege.txt", "");
 }

 private void button1_Click(object sender, EventArgs e)
 {
 generationCount++;
 Bitmap new_map = new Bitmap(1000,1000);
 Pen myPen = new Pen(Color.Red);
 Graphics graph = Graphics.FromImage(new_map);

 work.new_generation(rnd, wPoint,generationCount);
 for (int i = 0; i < 20; i++)
 {
 int x = 500, y = 500;
 for (int j = 0; j < 1000; j++)
 {
 int nx = x, ny = y;
 switch (work.get(i).get()[j])
 {
 case 0: nx--; break;
 case 1: nx++; break;
 case 2: ny++; break;
 case 3: ny--; break;
 }
 graph.DrawLine(myPen, x, y, nx, ny);
 x = nx; y = ny;
 }
 }
 myPen.Color = Color.Green;
 myPen.Width = 8;

 for (int i = 0; i < wPoint.getCount(); i++)

 graph.DrawEllipse(myPen, wPoint.getPoint(i).getPoints()[0] - 2,
wPoint.getPoint(i).getPoints()[1] - 2, 4, 4);
 pictureBox1.Image = new_map;

 textBox1.Text = Math.Round(work.get_shfitness(),2).ToString();
 textBox2.Text = generationCount.ToString();

 File.AppendAllText("shFitnessBest.txt", Math.Round(work.get_shfitness(), 2).ToString() +
"\r\n");
 File.AppendAllText("shFitnessAverege.txt", Math.Round(work.get()[0].get_shfitness(),
2).ToString() + "\r\n");
 File.AppendAllText("FitnessBest.txt", Math.Round(work.get_fitness(), 2).ToString() +
"\r\n");
 File.AppendAllText("FitnessAverege.txt", Math.Round(work.get()[0].get_fitness(),
2).ToString() + "\r\n");

 File.WriteAllText(".\\Info\\shFitness.txt", "");
 File.WriteAllText(".\\Info\\Fitness.txt", "");
 for (int i = 0; i < 20; i++)
 {
 File.AppendAllText(".\\Info\\shFitness.txt",
work.get()[i].get_shfitness().ToString()+"\r\n");
 File.AppendAllText(".\\Info\\Fitness.txt", work.get()[i].get_fitness().ToString() +
"\r\n");
 }
 }
 }
}

MY RESULT

Best Fitness
Averege
Fitness

Best Shared
Fitness

Averege Shared
Fitness

580 570,3

30,53 40,78

562 569,1

31,22 42,14

560 572,6

28 31,05

568 570,6

28,4 33,07

546 568,2

27,3 30,02

560 570,6

28 30,6

556 567,5

27,8 29,37

554 567,6

27,7 28,84

550 570,2

27,5 28,98

546 563,7

27,3 28,65

528 551,7

26,4 28,22

530 547,4

26,5 28,31

526 541,4

26,3 27,21

508 533,4

25,4 26,67

512 526

25,6 26,44

502 524,7

25,1 26,37

498 518,5

24,9 25,92

490 512

24,5 25,73

484 502,1

24,2 25,1

482 496,9

24,1 24,85

478 496,5

23,9 24,83

472 490,9

23,6 24,54

470 480,4

23,5 24,02

460 473,3

23 23,67

458 467,6

22,9 23,38

446 464,3

22,3 23,22

446 457,3

22,3 22,86

438 450

21,9 22,5

434 447,9

21,7 22,4

430 443,3

21,5 22,16

426 433,4

21,3 21,67

414 428,4

20,7 21,42

414 427,5

20,7 21,37

410 423,4

20,5 21,17

406 415,5

20,3 20,77

398 409,2

19,9 20,46

394 405,2

19,7 20,26

394 402,8

19,7 20,14

392 399,8

19,6 19,99

386 395,3

19,3 19,76

386 392,5

19,3 19,62

386 393,3

19,3 19,66

386 391,2

19,3 19,56

380 388,5

19 19,42

374 384,8

18,7 19,24

372 381,2

18,6 19,06

368 376,4

18,4 18,82

364 374,3

18,2 18,72

362 370,9

18,1 18,54

356 365,9

17,8 18,29

356 362,8

17,8 18,14

352 358,7

17,6 17,94

346 353,2

17,3 17,66

340 351,8

17 17,59

338 349,4

16,9 17,47

336 346

16,8 17,3

338 344,5

16,9 17,22

336 342

16,8 17,1

328 338,8

16,4 16,94

328 336

16,4 16,8

322 331,4

16,1 16,57

320 329,1

16 16,46

308 325,9

15,4 16,29

312 321,3

15,6 16,07

314 320,9

15,7 16,05

314 319,6

15,7 15,98

310 317,4

15,5 15,87

306 314,2

15,3 15,71

300 309

15 15,45

296 305,9

14,8 15,3

290 301,5

14,5 15,08

286 297,2

14,3 14,86

278 292,9

13,9 14,64

276 285,2

13,8 14,26

270 281,5

13,5 14,08

270 279,5

13,5 13,98

264 276,8

13,2 13,84

268 276,2

13,4 13,81

266 273

13,3 13,65

264 272

13,2 13,6

268 270,5

13,4 13,53

264 269,7

13,2 13,48

262 267,8

13,1 13,39

262 267,2

13,1 13,36

254 264,8

12,7 13,24

254 264,9

12,7 13,24

252 263,2

12,6 13,16

252 258,6

12,6 12,93

248 257,8

12,4 12,89

246 254,3

12,3 12,72

242 250,3

12,1 12,51

244 247,7

12,2 12,38

238 245,6

11,9 12,28

240 244,2

12 12,21

234 243,1

11,7 12,16

232 239,7

11,6 11,99

232 237,7

11,6 11,88

230 234,4

11,5 11,72

226 233,4

11,3 11,67

226 232,1

11,3 11,6

224 231

11,2 11,55

220 230,3

11 11,52

216 227,7

10,8 11,38

214 226,4

10,7 11,32

220 226,5

11 11,32

218 224,8

10,9 11,24

214 222,5

10,7 11,12

214 219,6

10,7 10,98

212 217,7

10,6 10,89

210 217,3

10,5 10,87

210 216,4

10,5 10,82

206 214,2

10,3 10,71

204 213,4

10,2 10,67

200 208,8

10 10,44

202 208,8

10,1 10,44

198 205,5

9,9 10,28

198 203,3

9,9 10,16

194 201,1

9,7 10,06

192 198,2

9,6 9,91

190 197,9

9,5 9,9

186 195,3

9,3 9,77

186 193

9,3 9,65

186 192

9,3 9,6

184 189,4

9,2 9,47

180 187,2

9 9,36

178 185,3

8,9 9,26

176 182,2

8,8 9,11

172 180,1

8,6 9,01

170 176,9

8,5 8,85

170 174,3

8,5 8,71

166 172,7

8,3 8,64

164 171,9

8,2 8,6

160 170,4

8 8,52

160 168,7

8 8,43

162 166,6

8,1 8,33

158 164,7

7,9 8,24

158 162,7

7,9 8,14

154 160,4

7,7 8,02

152 157,7

7,6 7,88

150 155,9

7,5 7,79

148 154,4

7,4 7,72

144 153,2

7,2 7,66

146 152,9

7,3 7,64

144 152

7,2 7,6

142 149

7,1 7,45

140 147,2

7 7,36

136 146

6,8 7,3

138 145,6

6,9 7,28

140 145,2

7 7,26

138 142,8

6,9 7,14

134 140,7

6,7 7,03

132 138,6

6,6 6,93

128 135,3

6,4 6,76

124 133,2

6,2 6,66

128 132,1

6,4 6,6

122 129,1

6,1 6,46

120 126,5

6 6,33

114 125,6

5,7 6,28

114 121,7

5,7 6,08

110 116,7

5,5 5,84

108 112,9

5,4 5,65

104 112,8

5,2 5,64

104 111,2

5,2 5,56

104 109,8

5,2 5,49

104 109

5,2 5,45

104 109,1

5,2 5,46

104 109,5

5,2 5,48

104 108,6

5,2 5,43

100 106,8

5 5,34

98 103,8

4,9 5,19

98 104

4,9 5,2

96 102,8

4,8 5,14

92 101,5

4,6 5,07

94 100,7

4,7 5,04

88 99,2

4,4 4,96

90 97

4,5 4,85

88 94,2

4,4 4,71

86 92,1

4,3 4,61

78 88,7

3,9 4,43

78 85,3

3,9 4,26

74 82,4

3,7 4,12

72 79,8

3,6 3,99

70 77,9

3,5 3,9

72 77,3

3,6 3,86

66 74,6

3,3 3,73

60 72,4

3 3,62

62 69,8

3,1 3,49

62 68,3

3,1 3,41

62 68,6

3,1 3,43

62 68,4

3,1 3,42

58 65,1

2,9 3,26

56 64

2,8 3,2

54 63,8

2,7 3,19

54 63

2,7 3,15

54 61,8

2,7 3,09

52 59,5

2,6 2,98

52 59,4

2,6 2,97

48 59,1

2,4 2,95

50 56,8

2,5 2,84

48 55,2

2,4 2,76

48 54

2,4 2,7

48 54,3

2,4 2,72

46 53,6

2,3 2,68

42 50,3

2,1 2,51

44 49,3

2,2 2,47

40 46

2 2,3

40 45,7

2 2,28

38 44,8

1,9 2,24

38 43,4

1,9 2,17

38 42

1,9 2,1

34 41,4

1,7 2,07

32 40,1

1,6 2,01

30 37,9

1,5 1,9

32 35,9

1,6 1,8

30 34,3

1,5 1,72

28 33,6

1,4 1,68

26 32,3

1,3 1,62

24 30,7

1,2 1,54

24 29,5

1,2 1,48

24 28,6

1,2 1,43

22 27

1,1 1,35

24 27

1,2 1,35

20 26,7

1 1,33

20 24,6

1 1,23

16 23,8

0,8 1,19

16 22,3

0,8 1,12

16 20,6

0,8 1,03

14 18,1

0,7 0,91

14 18,2

0,7 0,91

12 18,2

0,6 0,91

12 16

0,6 0,8

12 17,1

0,6 0,86

12 14,6

0,6 0,73

10 14,4

0,5 0,72

6 12,7

0,3 0,64

6 12,1

0,3 0,61

6 10,1

0,3 0,51

6 9,2

0,3 0,46

2 8,6

0,1 0,43

4 8,5

0,2 0,43

2 7

0,1 0,35

2 6,1

0,1 0,31

2 5,9

0,1 0,3

2 5,1

0,1 0,26

0 4,5

0 0,22

2 4,6

0,1 0,23

2 4,9

0,1 0,25

0 3,7

0 0,19

2 5

0,1 0,25

2 4,5

0,1 0,23

0 3,5

0 0,18

2 5,4

0,1 0,27

0

5

10

15

20

25

30

35

40

45

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

1
0

5

1
1

3

1
2

1

1
2

9

1
3

7

1
4

5

1
5

3

1
6

1

1
6

9

1
7

7

1
8

5

1
9

3

2
0

1

2
0

9

2
1

7

2
2

5

2
3

3

2
4

1

2
4

9

Fi
tn

e
ss

Generation

Averege Shared Fitness

Best Shared Fitness

0

100

200

300

400

500

600

700

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

2
3

5

2
4

4

Fi
tn

e
ss

Generation

Best Fitness

Averege Fitness

GENERATION INFORATION

№ Fitness
Shared
Fitness

1 578 32,1

2 592 32,9

3 596 33,1

4 578 34,0

5 586 34,5

6 588 34,6

7 570 35,6

8 576 36,0

9 582 36,4

10 584 36,5

11 586 36,6

12 564 37,6

13 578 38,5

14 578 41,3

15 564 43,4

16 564 51,3

17 564 56,4

18 554 69,3

19 552 138,0

20 520 173,3

№ Fitness
Shared
Fitness

1 384 19,2

2 384 19,2

3 386 19,3

4 386 19,3

5 388 19,4

6 388 19,4

7 388 19,4

8 388 19,4

9 388 19,4

10 390 19,5

11 392 19,6

12 392 19,6

13 392 19,6

14 394 19,7

15 394 19,7

16 394 19,7

17 394 19,7

18 396 19,8

19 396 19,8

20 404 20,2

№ Fitness
Shared
Fitness

1 276 13,8

2 278 13,9

3 280 14

4 280 14

5 280 14

6 282 14,1

7 282 14,1

8 282 14,1

9 284 14,2

10 284 14,2

11 284 14,2

12 284 14,2

13 284 14,2

14 286 14,3

15 286 14,3

16 286 14,3

17 288 14,4

18 288 14,4

19 288 14,4

20 288 14,4

№ Fitness
Shared
Fitness

1 176 8,8

2 176 8,8

3 180 9

4 180 9

5 180 9

6 180 9

7 180 9

8 180 9

9 182 9,1

10 182 9,1

11 182 9,1

12 182 9,1

13 182 9,1

14 184 9,2

15 184 9,2

16 184 9,2

17 184 9,2

18 186 9,3

19 188 9,4

20 194 9,7

№ Fitness
Shared
Fitness

1 0 0

2 0 0

3 2 0,1

4 2 0,1

5 2 0,1

6 4 0,2

7 4 0,2

8 4 0,2

9 4 0,2

10 4 0,2

11 6 0,3

12 6 0,3

13 6 0,3

14 6 0,3

15 8 0,4

16 8 0,4

17 8 0,4

18 10 0,5

19 10 0,5

20 12 0,6

