MINISTRY OF EDUCATION REPUBLIC OF BELARUS
ESTABLISHMENT OF EDUCATION
"BREST STATE TECHNICHNICAL UNIVERSITY™"

Practice work Ne3
«Evolutionary Computationy
Subject: «Lucky Dog Problem with Fithess Sharing Algorithmy

Made by:
Uladzimir Shukailo
Checked by:

Pr. Akira Imada

2016

1. Create a population of N chromosomes of 1000 genes each of whose
values is 1, 2, 3 or 4. Chromosome represents 1000 steps of one dog.

Program code
#include <iostream>
#include <Windows.h>
#include <vector>
#include <math.h>
#include <fstream>
#include "time.h"

using namespace std;

void NextG(int mas1[20][1000], int mas2[20][1000]);

void Mut(int mas1[20][1000]);

void Fit(int mas1[20][1000], int F[20]);

void OutCord(int mas[20][1000], int m, int c[20][2]);

void Sh_fit_sort(int mas1[20][1000], int c[20][2], int f[20], int F[20]);
void OutBCAF(vector<int> bc, vector<int> af);

int main()
{
vector<int> bc; I
vector<int> af;
int ch[20][1000];
{
yl =yl +f[i];
}
af.push_back(y1 / 20);
cout << bc[0] <<'"; //display fitnes of best chromosom

for (intend = 0; end == 0;)
{
NextG(ch, child);
Mut(child);
Fit(child, F);
Sh_fit_sort(child, c, f, F);
OutCord(child, g, ¢);
bc.push_back(f[0]); /lcalculating best and average fitness of generation 1

yl=0;
for (inti=0;i<20;i++)
{
yl =yl +f[i];
}
af.push_back(y1 / 20);
cout << bc[g] <<"'"; //display fitnes of best chromosom 1
if (bc[g] == 0) end =1, //stoping 1
g++{
NextG(child, ch);
Mut(ch);
Fit(ch, F);
Sh_fit_sort(ch, c, f, F);
OutCord(ch, g, ¢);
bc.push_back(f[0]); //calculating best and average fitness of generation 2
yl=0;
for (inti=0;i<20;i++)
{
yl =yl +fli];
}
af.push_back(y1 / 20);
cout << bc[g] <<'"; /ldisplay fitnes of best chromosom 2
if (oc[g] ==0) end = 1; //stoping 2
gt++;
}

}
OutBCAF(bc, af);

std::cout << "(To see more information, check text files: BC.txt, AF.txt, GEN.txt, Xways.txt, Yways.txt)"
<< endl << endl;

foutX << endl;

foutY << endl;

system("pause");

return 0;
}
void NextG(int mas1[20][1000], int mas2[20][1000])
{
srand(time(NULL));
int x1, x2, e;
for (ints=0; s < 20; s++)
{
x1 =rand() % 10;
x2 = rand() % 10;
for (inti=0; i <1000; i++) //uniform crossover
{
e=rand() % 2;
if (e == 1) { mas2[s][i] = mas1[x1][i]; }
else { mas2[s][i] = mas1[x2][i]; }
}
}
}
void Mut(int mas1[20][1000])
{
srand(time(NULL));
for (inti=0;i<20;i++)
{
for (int f = 0; f < 1000; f++)
{
int mut = rand() % 20;
if (mut==2) {
mas1[i][f] = rand() % 4 + 1;
}
}
}
void Fit(int mas1[20][1000], int F[20])
{

int X1 =500, Y1=500,x1=0,y1=0,x2=0,y2=0,x3=0,y3=0,x4=0,y4 =0, f, f2, f3, f4;
for (inti=0;i<20;i++)
{
Fli1=1;
X1 =500;
Y1 =500;
for (int f = 0; f < 1000; f++) // dog is moving 1
{
switch (mas1[i][f])
{

case 1: { Y1=Y1+1; break; }
case 2: { Y1=Y1-1,; break; }
case 3: { X1 = X1 + 1; break; }
case 4: { X1 = X1 - 1; break; }
default: cout << "error" << endl;
}

if (X1==1001){X1=0;}

if (X1 ==-1) { X1=1000; }
if((Y1==1001){Y1=0;}

if (Y1==-1){Y1=1000; }

if (X1==200 && Y1==200){F[i]=0;} //ifdog find sausage 1
if (X1 ==200 && Y1==800) { F[i]=0; } //ifdog find sausage 2
if (X1 ==800 && Y1==800) { F[i] =0; } //ifdog find sausage 3
if (X1 ==800 && Y1==200){F[i]=0;} //ifdog find sausage 4

}
if (F[i] = 10)
{

x1 =200 - X1;

¥

yl1=200-Y1;

x2 =200 - X1;

y2 =800 - Y1;

x3 =800 - X1;

y3 =800 - Y1;

x4 =800 - X1;

y4 =200 - Y1,

f1 = fabs(x1) + fabs(y1);

f2 = fabs(x2) + fabs(y2);

f3 = fabs(x3) + fabs(y3);

f4 = fabs(x4) + fabs(y4);

if (fl <=2 && f1 <=3 && f1 <=14) F[i] = f1,
if (f2 <=1l && 12 <=13 && 2 <=14) F[i] = 12;
if (f3<=12 && f3 <=l && 3 <=f4) F[i] = 13;
if (f4 <=2 && T4 <=13 && 4 <=f1) F[i] = f4;

void OutCord(int mas[20][1000], int m, int c[20][2])

{

ofstream foutX("Xways.txt", ios_base::app); //making file of X cordinates
ofstream foutY (""Yways.txt", ios_base::app); //making file of Y cordinates
int X1 =500, Y1 =500;

foutX <<"-"<<m+1<<" " << endl;
foutY <<"-"<<m+1<<" " << endl;
for (inti=0;i<20;i++)
{
foutX <<i+1<<"/MII" << endl;
foutY << i+ 1<<"//II" << endl;
X1 =500;
Y1 =500;
for (int f = 0; f < 1000; f++) // dog is moving 1
{
switch (mas[i][f])
{
case 1: { Y1 =Y1+1; break; }
case 2: { Y1 =Y1-1; break; }
case 3: { X1 = X1 +1; break; }
case 4: { X1 = X1 - 1; break; }
default: cout << "error" << endl;
}
foutX << X1 << endl;
foutY << Y1 << endl;
c[i][1] = X1;
c[i][2] = Y1;
}
foutX << endl;
foutY << endl;
}

