
Contemporary Intelligent Information Techniques (CIIT)

Practice #4 (24/10/2016)

Siarhei Savaniuk (AI-10)

LabWork #4 Iterated Prisoner’s Dilemma

Diagram1 – Max fitness function value by iteration

Diagram2 – Average fitness function value by iteration

1. First iteration

Best: 1010100111010001011110101011001110011110000100101010100100100001

Random: 1000100110010001111010000100110011100001010010100101000001101101

Game Result

0 1 0 1 1 0 0 1 1 20

0 1 1 0 0 0 1 1 0 15

Score best: 0 + 1 + 0 + 5 + 5 + 3 + 0 + 1 + 5 = 20

Score random: 0 + 1 + 5 + 0 + 3 + 0 + 5 + 1 + 0 = 15

2. Average iteration:

Best: 1010111100001001010101010101111011000100110101010101101100110001

Random: 1010110100 011110000100001101000010100011100000110010011101011100

Game Result

1 0 1 0 1 1 1 0 1 25

0 1 0 0 0 1 0 1 1 15

Score best: 5 + 0 + 5 + 3 + 5 + 1 + 5 + 0 + 1 = 25

Score random: 0 + 5 + 0 + 3 + 0 + 1 + 0 + 5 + 1 = 15

3. Last iteration:

Best: 1010 1011111101 0100111010 1111101001 0110111100 0111010011 1100110001

Random: 1111 0011000100 0010111000 1011101010 0110110000 0010010001 1000001100

Game Result

0 1 1 1 0 1 1 1 1 27

1 0 0 0 1 0 1 0 1 12

Score best: 0 + 5 + 5 + 5 + 0 + 5 + 1 + 5 + 1 = 27

Score random: 5 + 0 + 0 + 0 + 5 + 0 + 1 + 0 + 1 = 12

Code (written in Java):

File Individual.java:
import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.concurrent.ThreadLocalRandom;

public class Individual {

 public static final int GENE_LENGTH = 64;

 private int[] genes;

 private List<List<Integer>> games = new ArrayList<>();

 private int fitnessValue;

 public Individual(boolean initialize) {

 genes = new int[GENE_LENGTH];

 if (initialize) {

 generateIndividual();

 fitnessValue = 0;

 }

 }

 public Individual(int[] genes) {

 this.genes = genes;

 fitnessValue = 0;

 }

 public int getFitnessValue() {

 return fitnessValue;

 }

 public void setFitnessValue(int fitnessValue) {

 this.fitnessValue = fitnessValue;

 }

 public void generateIndividual() {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = ThreadLocalRandom.current().nextInt(0, 2);

 }

 }

 public int getGene(int index) {

 return genes[index];

 }

 public void addGames(List<Integer> game) {

 games.add(game);

 }

 public void updateFitness(int value) {

 fitnessValue += value;

 }

 public int[] getGenesBeforeCutPoint(int cutPoint) {

 int[] genes = new int[cutPoint];

 System.arraycopy(this.genes, 0, genes, 0, cutPoint);

 return genes;

 }

 public int[] getGenesAfterCutPoint(int cutPoint) {

 int[] genes = new int[GENE_LENGTH - cutPoint];

 System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);

 return genes;

 }

 public void resetGames() {

 games.clear();

 }

 public void resetFitnessValue() {

 fitnessValue = 0;

 }

 public List<List<Integer>> getBestMatch() {

 int currentIndividualPoints = 0, maxPoints = 0, index = 0;

 for (int i = 0; i < games.size(); i += 2) {

 currentIndividualPoints = 0;

 for (int j = 0; j < games.get(i).size(); ++j) {

 if (games.get(i).get(j) == 1 && games.get(i + 1).get(j) == 1)

{

 currentIndividualPoints += 1;

 } else if (games.get(i).get(j) == 1 && games.get(i +

1).get(j) == 0) {

 currentIndividualPoints += 5;

 } else if (games.get(i).get(j) == 0 && games.get(i +

1).get(j) == 0) {

 currentIndividualPoints += 3;

 }

 }

 if (currentIndividualPoints > maxPoints) {

 maxPoints = currentIndividualPoints;

 index = i;

 }

 }

 return games.subList(index, index + 2);

 }

 @Override

 public String toString() {

 return "Individual{" +

 "fitnessValue=" + fitnessValue +

 ", genes=" + Arrays.toString(genes) +

 '}' + '\n';

 }

}

File Population.java:
import java.util.Arrays;

public class Population {

 public static final int POPULATION_SIZE = 40;

 private Individual[] individuals;

 public Population(boolean initialize) {

 individuals = new Individual[POPULATION_SIZE];

 if (initialize) {

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 individuals[i] = new Individual(true);

 }

 }

 }

 public Population(Individual[] individuals) {

 this.individuals = new Individual[POPULATION_SIZE];

 System.arraycopy(individuals, 0, this.individuals, 0,

individuals.length);

 }

 public Individual getIndividual(int index) {

 return individuals[index];

 }

 public void addIndividual(int index, Individual individual) {

 individuals[index] = individual;

 }

 public Individual[] getHalfFittestIndividuals() {

 Individual[] fittestIndividuals = new Individual[POPULATION_SIZE /

2];

 System.arraycopy(individuals, 0, fittestIndividuals, 0,

fittestIndividuals.length);

 return fittestIndividuals;

 }

 public double getMaxFitness() {

 return individuals[0].getFitnessValue();

 }

 public double getAverageFitness() {

 double sum = 0;

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 sum += individuals[i].getFitnessValue();

 }

 return sum / POPULATION_SIZE;

 }

 public Individual[] getAllIndividuals() {

 return individuals;

 }

 public void sort() {

 for (int i = 0; i < individuals.length - 1; ++i) {

 for (int j = i + 1; j < individuals.length; ++j) {

 if (individuals[i].getFitnessValue() <

individuals[j].getFitnessValue()) {

 Individual individual = individuals[i];

 individuals[i] = individuals[j];

 individuals[j] = individual;

 }

 }

 }

 }

 public void resetGames() {

 for (Individual individual: individuals) {

 individual.resetGames();

 }

 }

 public void resetFitnessValue() {

 for (Individual individual : individuals) {

 individual.resetFitnessValue();

 }

 }

 @Override

 public String toString() {

 return "Population{\n" + Arrays.toString(individuals) + "}\n";

 }

}

File GeneticAlgorithm.java:
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

 private Population population;

 public GeneticAlgorithm(Population population) {

 this.population = population;

 }

 public Population run() {

 Population halfPopulation = new

Population(population.getHalfFittestIndividuals());

 Population nextGeneration = new

Population(halfPopulation.getAllIndividuals());

 for (int i = 0, j = Population.POPULATION_SIZE / 2; i <

Population.POPULATION_SIZE / 4; ++i, j += 2) {

 Individual[] parents = chooseParents(halfPopulation);

 int cutPoint =

ThreadLocalRandom.current().nextInt(Individual.GENE_LENGTH);

 Individual[] descendants = crossover(parents, cutPoint);

 nextGeneration.addIndividual(j, descendants[0]);

 nextGeneration.addIndividual(j + 1, descendants[1]);

 }

 population = nextGeneration;

 return population;

 }

 private Individual[] chooseParents(Population fittestIndividuals) {

 return new Individual[]

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

20)),

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

20))};

 }

 private Individual[] crossover(Individual[] parents, int curPoint) {

 Individual[] descendants = new Individual[2];

 int[] firstDescendantGenes =

concat(parents[0].getGenesBeforeCutPoint(curPoint),

 parents[1].getGenesAfterCutPoint(curPoint));

 int[] secondIndividualGenes =

concat(parents[0].getGenesAfterCutPoint(curPoint),

 parents[1].getGenesBeforeCutPoint(curPoint));

 descendants[0] = new Individual(firstDescendantGenes);

 descendants[1] = new Individual(secondIndividualGenes);

 return descendants;

 }

 private int[] concat(int[] genes1, int[] genes2) {

 int[] genes = new int[Individual.GENE_LENGTH];

 System.arraycopy(genes1, 0, genes, 0, genes1.length);

 System.arraycopy(genes2, 0, genes, genes1.length, genes2.length);

 return genes;

 }

}

File PrisonerDilemma.java:
import java.util.ArrayList;

import java.util.List;

import java.util.concurrent.ThreadLocalRandom;

public class PrisonerDilemma {

 public void play(Population population) {

 List<Integer> gameOfCurIndividual = new ArrayList<>(),

 gameOfRandomIndividual = new ArrayList<>();

 for (int i = 0; i < 40; ++i) {

 Individual currentIndividual = population.getIndividual(i);

 preparedData(gameOfCurIndividual, gameOfRandomIndividual);

 for (int j = 0; j < 5; ++j) {

 Individual randomIndividual =

population.getIndividual(ThreadLocalRandom.current().nextInt(0, 40));

 for (int k = 0; k < 6; ++k) {

 calculateNextResult(currentIndividual, randomIndividual,

gameOfCurIndividual, gameOfRandomIndividual);

 }

 if (isWinningGame(gameOfCurIndividual,

gameOfRandomIndividual)) {

 currentIndividual.addGames(new

ArrayList<>(gameOfCurIndividual));

 currentIndividual.addGames(new

ArrayList<>(gameOfRandomIndividual));

 currentIndividual.updateFitness(1);

 }

 preparedData(gameOfCurIndividual, gameOfRandomIndividual);

 }

 }

 population.sort();

 }

 public void preparedData(List<Integer> gameOfCurIndividual, List<Integer>

gameOfRandomIndividual) {

 gameOfCurIndividual.clear();

 gameOfRandomIndividual.clear();

 for (int i = 0; i < 3; ++i) {

 gameOfCurIndividual.add(ThreadLocalRandom.current().nextInt(0,

2));

 gameOfRandomIndividual.add(ThreadLocalRandom.current().nextInt(0,

2));

 }

 }

 public void calculateNextResult(Individual currentIndividual, Individual

randomIndividual,

 List<Integer> gameOfCurIndividual,

List<Integer> gameOfRandomIndividual) {

 StringBuilder sb1 = new StringBuilder();

 StringBuilder sb2 = new StringBuilder();

 for (int i = gameOfCurIndividual.size() - 1, j = 0; j < 3; ++j, --i)

{

 sb1.append(gameOfRandomIndividual.get(i));

 sb1.append(gameOfCurIndividual.get(i));

 }

gameOfCurIndividual.add(currentIndividual.getGene(Integer.parseInt(sb1.toStri

ng(), 2)));

 for (int i = gameOfCurIndividual.size() - 1, j = 0; j < 3; ++j, --i)

{

 sb2.append(gameOfCurIndividual.get(i));

 sb2.append(gameOfRandomIndividual.get(i - 1));

 }

gameOfRandomIndividual.add(randomIndividual.getGene(Integer.parseInt(sb2.toSt

ring(), 2)));

 }

 public boolean isWinningGame(List<Integer> gameOfCurIndividual,

List<Integer> gameOfRandomIndividual) {

 int currentIndividualPoints = 0, randomIndividualPoints = 0;

 for (int i = 0; i < gameOfCurIndividual.size(); ++i) {

 if (gameOfCurIndividual.get(i) == 1 &&

gameOfRandomIndividual.get(i) == 1) {

 currentIndividualPoints += 1;

 randomIndividualPoints += 1;

 } else if (gameOfCurIndividual.get(i) == 1 &&

gameOfRandomIndividual.get(i) == 0) {

 currentIndividualPoints += 5;

 } else if (gameOfCurIndividual.get(i) == 0 &&

gameOfRandomIndividual.get(i) == 1) {

 randomIndividualPoints += 5;

 } else {

 currentIndividualPoints += 3;

 randomIndividualPoints += 3;

 }

 }

 return currentIndividualPoints > randomIndividualPoints;

 }

}

File Main.java:
import java.util.List;

public class Main {

 public static void main(String[] args) {

 PrisonerDilemma prisonerDilemma = new PrisonerDilemma();

 Population population = new Population(true);

 GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

 for (int i = 0; i < 50; ++i) {

 System.out.println("ITERATION #" + (i + 1));

 prisonerDilemma.play(population);

 List<List<Integer>> list =

population.getIndividual(0).getBestMatch();

 for (List<Integer> match: list) {

 System.out.println(match);

 }

 System.out.println(population);

 population = geneticAlgorithm.run();

 population.resetGames();

 population.resetFitnessValue();

 }

 }

}

