max fithess

average fitness

Contemporary Intelligent Information Techniques (CIIT)
Practice #4 (24/10/2016)
Siarhei Savaniuk (Al-10)

LabWork #4 Iterated Prisoner’s Dilemma

Max fitness function value by iteration

iteration

Diagram?2 — Average fitness function value by iteration

L L L L L L L L L i
2 3 4 5 6 7 8 9 10 11 12 13 14 15
iteration
Diagram1 — Max fitness function value by iteration
Average fitness function value by iteration
L L i
2 3 4 5 6 7 8 9 10 11 12 13 14 15



1. Firstiteration
Best: 1010100111010001011110101011001110011110000100101010100100100001
Random: 1000100110010001111010000100110011100001010010100101000001101101

Game Result
0 1 0 1 1 0 0 1 1 20
0 1 1 0 0 0 1 1 0 15

Scorebest:0+1+0+5+5+3+0+1+5=20
Score random:0+1+5+0+3+0+5+1+0=15

2. Average iteration:
Best: 1010111100001001010101010101111011000100110101010101101100110001
Random: 1010110100 011110000100001101000010100011100000110010011101011100

Game Result
1 0 1 0 1 1 1 0 1 25
0 1 0 0 0 1 0 1 1 15

Scorebest:5+0+5+3+5+1+5+0+1=25
Score random:0+5+0+3+0+1+0+5+1=15

3. Last iteration:
Best: 1010 1011111101 0100111010 1111101001 0110111100 0111010011 1100110001
Random: 1111 0011000100 0010111000 1011101010 0110110000 0010010001 1000001100

Game Result
0 1 1 1 0 1 1 1 1 27
1 0 0 0 1 0 1 0 1 12

Scorebest: 0+5+5+5+0+5+1+5+1=27
Score random:5+0+0+0+5+0+1+0+1=12

Code (written in Java):

File Individual.java:

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.concurrent.ThreadLocalRandom;

public class Individual {
public static final int GENE_LENGTH = 64;

private int[] genes;
private List<List<Integer>> games = new ArrayList<>();
private int fitnessValue;

public Individual (boolean initialize) {
genes = new int[GENE LENGTH] ;

if (initialize) {
generatelIndividual () ;
fitnessValue = 0;

}

public Individual (int[] genes) {
this.genes = genes;
fitnessValue = 0;

}

public int getFitnessValue () {
return fitnessValue;

}



public void setFitnessValue (int fitnessValue) {
this.fitnessValue = fitnessValue;

}

public void generatelIndividual () {
for (int i = 0; i < GENE_LENGTH; +4+1) {
genes[i] = ThreadLocalRandom.current() .nextInt (0, 2);

}

public int getGene (int index) {
return genes|[index];

}

public void addGames (List<Integer> game) {
games.add (game) ;

}

public void updateFitness (int value) {
fitnessValue += value;
}

public int[] getGenesBeforeCutPoint (int cutPoint) {
int[] genes = new int[cutPoint];

System.arraycopy (this.genes, 0, genes, 0, cutPoint);

return genes;

}

public int[] getGenesAfterCutPoint (int cutPoint) {
int[] genes = new int[GENE LENGTH - cutPoint];

System.arraycopy (this.genes, cutPoint, genes, 0, genes.length);

return genes;

}

public void resetGames () {
games.clear () ;

}

public void resetFitnessValue() {
fitnessValue = 0;

}

public List<List<Integer>> getBestMatch() {

int currentIndividualPoints = 0, maxPoints = 0, index = 0;
for (int i = 0; 1 < games.size(); 1 += 2) {
currentIndividualPoints = 0;
for (int j = 0; J < games.get (i) .size(); ++7J) {
if (games.get (i) .get(j) == 1 && games.get(i + 1).get(j) == 1)

currentIndividualPoints += 1;

} else if (games.get (i) .get(j) == 1 && games.get (i +
1) .get(j) == 0) {
currentIndividualPoints += 5;
} else if (games.get (i) .get(j) == 0 && games.get (i +
1) .get(j) == 0) {

currentIndividualPoints += 3;

}

if (currentIndividualPoints > maxPoints) {
maxPoints = currentIndividualPoints;
index = i;



}

return games.subList (index, index + 2);

}

@Override
public String toString () {
return "Individual{" +
"fitnessValue=" + fitnessValue +

", genes=" + Arrays.toString(genes) +
v}v + v\nv;

File Population.java:
import java.util.Arrays;

public class Population {

public static final int POPULATION SIZE = 40;

private Individual[] individuals;

public Population (boolean initialize) {
individuals = new Individual [POPULATION SIZE];

if (initialize) {
for (int 1 = 0; 1 < POPULATION SIZE; ++1) |
individuals[i] = new Individual (true) ;

}

public Population (Individual[] individuals) {
this.individuals = new Individual [POPULATION SIZE];

System.arraycopy(individuals, 0, this.individuals, O,
individuals.length) ;
}

public Individual getIndividual (int index) {
return individuals[index];

}

public void addIndividual (int index, Individual individual) {

individuals[index] = individual;

}

public Individual[] getHalfFittestIndividuals () {
Individual[] fittestIndividuals = new Individual [POPULATION SIZE /

2];

System.arraycopy(individuals, 0, fittestIndividuals, O,

fittestIndividuals.length) ;

return fittestIndividuals;
}
public double getMaxFitness () {
return individuals[0].getFitnessValue();

}

public double getAverageFitness () {
double sum = 0;

(int 1 = 0; 1 < POPULATION SIZE; ++i) {

for
sum += individuals[i].getFitnessValue();



return sum / POPULATION SIZE;
}

public Individual[] getAllIndividuals() {
return individuals;

}

public void sort () {
for (int i = 0; i < individuals.length - 1; ++1i) {

for (int j = 1 + 1; j < individuals.length; ++3j) {
if (individuals[i].getFitnessValue() <
individuals([j].getFitnessValue()) {
Individual individual = individuals[i];
individuals[i] = individuals|[j];
individuals([]j] = individual;

}

public void resetGames () {
for (Individual individual: individuals) {

individual.resetGames () ;

}

public void resetFitnessValue () {
for (Individual individual : individuals) {

individual.resetFitnessValue () ;

}

@QOverride

public String toString () {
return "Population{\n" + Arrays.toString(individuals) + "}\n";

}

File GeneticAlgorithm.java:
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {
private Population population;

public GeneticAlgorithm (Population population) {
this.population = population;

}

public Population run() {
Population halfPopulation = new
Population (population.getHalfFittestIndividuals());
Population nextGeneration = new
Population (halfPopulation.getAllIndividuals());

for (int i = 0, j = Population.POPULATION SIZE / 2; i <

Population.POPULATION SIZE / 4; ++i, j += 2) {
Individual[] parents = chooseParents (halfPopulation);

int cutPoint =
ThreadLocalRandom.current().nextInt(Individual.GENE_LENGTH);

Individual[] descendants = crossover (parents, cutPoint);

nextGeneration.addIndividual (j, descendants[0]);
nextGeneration.addIndividual (j + 1, descendants[1l]);



population = nextGeneration;

return population;
}

private Individual[] chooseParents (Population fittestIndividuals) {
return new Individual []
{fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,

20)),

fittestIndividuals.getIndividual (ThreadLocalRandom. current () .nextInt (0,

20)) 1}
}

private Individual[] crossover (Individual[] parents, int curPoint) {
Individual|[] descendants = new Individual[2];

int[] firstDescendantGenes =
concat (parents[0] .getGenesBeforeCutPoint (curPoint),
parents[l].getGenesAfterCutPoint (curPoint));
int[] secondIndividualGenes =
concat (parents[0] .getGenesAfterCutPoint (curPoint),
parents[1l].getGenesBeforeCutPoint (curPoint));

descendants[0] = new Individual (firstDescendantGenes) ;
descendants[1l] = new Individual (secondIndividualGenes) ;

return descendants;

}

private int[] concat (int[] genesl, int[] genes2) {
int[] genes = new int[Individual.GENE_ LENGTH];

System.arraycopy (genesl, 0, genes, 0, genesl.length);
System.arraycopy (genes2, 0, genes, genesl.length, genes2.length);

return genes;

File PrisonerDilemma.java:
import java.util.ArrayList;

import java.util.List;
import java.util.concurrent.ThreadLocalRandom;

public class PrisonerDilemma {

public void play (Population population) {
List<Integer> gameOfCurIndividual = new ArrayList<>(),
gameOfRandomIndividual = new ArrayList<>();

for (int i = 0; 1 < 40; ++i) {
Individual currentIndividual = population.getIndividual (i) ;
preparedData (gameOfCurIndividual, gameOfRandomIndividual) ;
for (int 7 = 0; j < 5; ++3) {
Individual randomIndividual =
population.getIndividual (ThreadLocalRandom. current () .nextInt (0, 40));
for (int k = 0; k < 6; ++k) {
calculateNextResult (currentIndividual, randomIndividual,
gameOfCurIndividual, gameOfRandomIndividual) ;

}

if (isWinningGame (gameOfCurIndividual,
gameOfRandomIndividual)) {



currentIndividual.addGames (new
ArrayList<> (gameOfCurIndividual)) ;

currentIndividual .addGames (new
ArrayList<> (gameOfRandomIndividual)) ;

currentIndividual .updateFitness (1) ;

}

preparedData (gameOfCurIndividual, gameOfRandomIndividual) ;
}
}
population.sort();

}

public void preparedData (List<Integer> gameOfCurIndividual, List<Integer>
gameOfRandomIndividual) {
gameOfCurIndividual.clear();
gameOfRandomIndividual.clear () ;

for (int i = 0; 1 < 3; ++1i) {
gameOfCurIndividual.add (ThreadLocalRandom. current () .nextInt (0,

gameOfRandomIndividual.add (ThreadLocalRandom. current () .nextInt (0,

public void calculateNextResult (Individual currentIndividual, Individual
randomIndividual,
List<Integer> gameOfCurIndividual,
List<Integer> gameOfRandomIndividual) {
StringBuilder sbl = new StringBuilder();
StringBuilder sb2 = new StringBuilder();

for (int i = gameOfCurIndividual.size() - 1, j = 0; j < 3; ++3j, --1)

sbl.append (gameOfRandomIndividual.get (i)) ;
sbl.append (gameOfCurIndividual.get (1))

gameOfCurIndividual.add (currentIndividual.getGene (Integer.parselInt(sbl.toStri
ng(), 2)));

for (int i = gameOfCurIndividual.size() - 1, j = 0; j < 3; ++3, --1)

sb2.append (gameOfCurIndividual.get (1)) ;
sb2.append (gameOfRandomIndividual.get (i - 1));

gameOfRandomIndividual.add (randomIndividual.getGene (Integer.parselint (sb2.toSt
ring (), 2)));
}

public boolean isWinningGame (List<Integer> gameOfCurIndividual,
List<Integer> gameOfRandomIndividual) {

int currentIndividualPoints = 0, randomIndividualPoints = 0;
for (int i = 0; i < gameOfCurIndividual.size(); ++i) {
if (gameOfCurIndividual.get (i) == 1 &&

gameOfRandomIndividual.get (i) == 1) {
currentIndividualPoints += 1;
randomIndividualPoints += 1;
} else if (gameOfCurIndividual.get (i) == 1 &&
gameOfRandomIndividual.get (i) == 0) {
currentIndividualPoints += 5;
} else if (gameOfCurIndividual.get (i) == 0 &&
gameOfRandomIndividual.get (i) == 1) {



randomIndividualPoints += 5;
} else {

currentIndividualPoints += 3;

randomIndividualPoints += 3;

}

return currentIndividualPoints > randomIndividualPoints;

File Main.java:
import java.util.List;

public class Main {

public static void main (String[] args) {
PrisonerDilemma prisonerDilemma = new PrisonerDilemma () ;
Population population = new Population (true);
GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

for (int 1 = 0; 1 < 50; ++1i) {
System.out.println ("ITERATION #" + (i + 1));
prisonerDilemma.play (population) ;
List<List<Integer>> list =
population.getIndividual (0) .getBestMatch () ;
for (List<Integer> match: list) {
System.out.println (match) ;

}
System.out.println (population);

population = geneticAlgorithm.run();

population.resetGames () ;
population.resetFitnessValue();



