
Dimension Reduction by Evolution

We have: 10-d space, 2-d space, 30 points, radius=1;

Code:

using System;
using System.Collections.Generic;
using System.Linq;

namespace лаба5
{
 public class Class1
 {
 Random rnd = new Random();
 const int size = 30;
 const int size1 = 10;
 const int size2 = 2;
 const int size3 = 100;
 int[] keys = new int[size3];
 List<double[,]> rd2List = new List<double[,]>();
 List<double[,]> array2List = new List<double[,]>();
 double[,] rd30 = new double[size, size1];
 double[,] rd2 = new double[size, size2];
 double[,] array30 = new double[size, size];
 double[,] array2 = new double[size, size];
 List<double[,]> newPopulation = new List<double[,]>();
 List<double[,]> p = new List<double[,]>();
 List<double[,]> parents = new List<double[,]>();
 List<double[,]> DList = new List<double[,]>();
 double[,] D = new double[30,30];
 List<double> fitnessSum = new List<double>();
 public Class1()
 {
 for (int i = 0; i < size; i++)
 {
 //10-D
 for (int j = 0; j < size1; j++)
 {
 rd30[i, j] = rnd.Next(0, 2001);

 if (rd30[i, j] > 1000)
 {
 rd30[i, j] /= 1000;
 }
 else
 {
 rd30[i, j] = rd30[i, j] / 1000 * -1;
 }
 }
 }
 //нахождение расстояний для первого степа 10
 double[] dif = new double[10];
 double sum = 0;
 double result = 0;
 for (int k = 0; k < size; k++)
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size1; j++)
 {
 dif[j] = Math.Pow((rd30[k, j] - rd30[i, j]), 2);
 }
 sum = dif.Sum();
 result = Math.Sqrt(sum);
 array30[k, i] = result;
 }
 }
 //2-D
 for (int l = 0; l < size3; l++) //ГЕНЕРИРУЕМ 100 РАЗ
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size2; j++)
 {
 rd2[i, j] = rnd.Next(0, 2001);
 if (rd2[i, j] > 1000)
 {
 rd2[i, j] /= 1000;
 }
 else
 {
 rd2[i, j] = rd2[i, j] / 1000 * -1;
 }
 }
 }
 //нахождение расстояний для первого степа 2
 double[] dif1 = new double[size2];
 for (int k = 0; k < size; k++)
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size2; j++)
 {
 dif1[j] = Math.Pow((rd2[k, j] - rd2[i, j]), 2);
 }
 sum = dif1.Sum();
 result = Math.Sqrt(sum);
 array2[k, i] = result;
 }
 }
 //нормализация
 double max30 = array30.Cast<double>().Max();
 double max2 = array2.Cast<double>().Max();
 for (int i = 0; i < size; i++)
 {

 for (int j = 0; j < size; j++)
 {
 array30[i, j] = array30[i, j] / max30;
 array2[i, j] = array2[i, j] / max2;
 }
 }
 rd2List.Add(rd2);
 array2List.Add(array2);
 }
 Fitness();
 Cross();
 //Mutation();
 }
 public void Fitness()
 {
 for (int i = 0; i < size; i++)
 {
 for (int j = 0; j < size; j++)
 {
 D[i, j] = array30[i, j] + array2[i, j];
 }
 }
 fitnessSum.Add(D.Cast<double>().Sum());
 DList.Add(D);
 }
 public void Cross()
 {
 for(int i = 0; i < size3; i++)
 {
 keys[i] = i;
 }
 Array.Sort(fitnessSum.ToArray(), keys);
 for (int i = 0; i < size3; i++)
 {
 newPopulation.Add(array2List[keys[i]]);
 }
 //сортируем фитнесы
 fitnessSum.Sort();
 for (int i = 0; i < size3; i++)
 {
 //выбираем родителей
 int a = rnd.Next(0, size3 / 2);
 int b = rnd.Next(0, size3 / 2);
 p.Add(newPopulation[a]);
 p.Add(newPopulation[b]);
 //кроссовер
 int c = rnd.Next(0, 2);
 if (c == 0)
 {
 parents.Add(p[0]);
 }
 else
 {
 parents.Add(p[1]);
 }
 }
 }
 public void Mutation()
 {
 for (int i = 0; i < size3; i++)
 {
 for (int j = 0; j < size; j++)
 {
 int value = rnd.Next(0, size);
 if (value == 0)

 {
 double c =// от -1 до 1
 parents[i][size,size] = c;
 }
 }
 fitnessSum.Add(parents.Cast<double>().Sum());
 }
 }
 }
}

Description (what program do):

1) Set 30 random points on 10-d space;

2) Calculate distance matrix of 10-d space;

3) Set 30 random points on 2-d space;

4) Calculate distance matrix of 2-d space;

5) Matrix 10-d minus matrix 2-d;

6) Calculate fitness by summing values from matrix (5);

7) Repeat 3-6 100 times (1-st random generation);

8) Sorting (less – better);

9) Making next generation (truncate sel., uniform cros.);

10) Repeat 4-6 100 times and sort;

11) Repeat 9 and 10 until fitness = 0 or fitness not changed after 20 gen.;

Best-Average fitness vs. Generation:

Mapped circles from surface of a hypersphere:

(1-from first generation; 2,3,4-from intermediate generations; 5-from

last generation)

