Dimension Reduction by Evolution

Algorithm

Assume N points are given in the n-1D space.

Calculate distance matriz R (N x N ) whose i-7 element is the Fuclidean distance
between the i-th and j-th point.

Also think of a tentative N points in the 2-D space that are located at random
at the beginning.

The distance matriz (Q is calculated in the same way as R.

Then the error matriz P = R — () is defined.

. Search for the locations of N points in the 2-D space that minimizes the sum

r.if element P.

We have: 10-d space, 2-d space, 30 points, radius=1;
Code:

using System;
using System.Collections.Generic;
using System.Ling;

namespace na6as

public class Classl

{
Random rnd = new Random();
const int size = 30;
const int sizel = 10;
const int size2 2;
const int size3 = 100;
int[] keys = new int[size3];
List<double[,]> rd2List = new List<double[,]>();
List<double[,]> array2List = new List<double[,]>();
double[,] rd30 = new double[size, sizel];
double[,] rd2 = new double[size, size2];
double[,] array3@ = new double[size, size];
double[,] array2 = new double[size, size];
List<double[, ]> newPopulation = new List<double[,]>();
List<double[,]> p = new List<double[,]>();
List<double[,]> parents = new List<double[,]>();
List<double[,]> DList = new List<double[,]>();
double[,] D = new double[30,30];

List<double> fitnessSum = new List<double>();
public Classi()
{
for (int 1 = @; i < size; i++)
{
//10-D
for (int j = @; j < sizel; j++)
{

rd30[i, j] = rnd.Next(@, 2001);



if (rd3e[i, j] > 1000)

{
rd3e[i, j] /= 1e000;
}
else
{
rd30[i, j] = rd30[i, j] / 1000 * -1;
}

}

//HaxoxneHne paccTOAHWW ANA nepBoro ctena 10
double[] dif = new double[10];
double sum = 0;
double result = 0;
for (int k = 0; k < size; k++)
{
for (int i = 0; i < size; i++)
{

for (int j = @; j < sizel; j++)

dif[j] = Math.Pow((rd30[k, j] - rd3@[i, j1), 2);
sum = dif.Sum();
result = Math.Sqrt(sum);
array30[k, i] = result;
}
}
//2-D
for (int 1 = @; 1 < size3; 1++) //TEHEPUPYEM 100 PA3
{
for (int i = @; i < size; i++)
{
for (int j = 0; j < size2; j++)
{
rd2[i, j] = rnd.Next(@, 2001);
if (rd2[i, j] > 1000)
{
rd2[i, j] /= 1000;

else
{
rd2[i, j] = rd2[i, j] / 1000 * -1;
}
}
}

//HaxoxZeHne pacCcTOSHUWI ANs nepBoro crtena 2
double[] difl = new double[size2];
for (int k = 0; k < size; k++)
{
for (int i = 0; i < size; i++)
{

for (int j = 0; j < size2; j++)
dif1[j] = Math.Pow((rd2[k, j] - rd2[i, j1), 2);

sum = difl.Sum();
result = Math.Sqrt(sum);
array2[k, i] = result;
}
}

//Hopmanu3auusa

double max30 = array30.Cast<double>().Max();
double max2 = array2.Cast<double>().Max();
for (int i = 0; i < size; i++)

{



for (int j = 0; j < size; j++)
{
array30[i, j] = array3@[i, j] / max30;
array2[i, j] = array2[i, j] / max2;
}
}
rd2List.Add(rd2);
array2List.Add(array2);

}
Fitness();
Cross();
//Mutation();
public void Fitness()
{
for (int i = @0; 1 < size; i++)
{
for (int j = 0; j < size; j++)
{
D[i, j] = array30[i, j] + array2[i, j];
}

fitnessSum.Add(D.Cast<double>().Sum());
DList.Add(D);

}
public void Cross()
{
for(int i = 0; i < size3; i++)
keys[i] = 1i;
}

Array.Sort(fitnessSum.ToArray(), keys);
for (int i = 0; i < size3; i++)
{
newPopulation.Add(array2List[keys[i]]);
}
//copTupyem ¢uTHeCH
fitnessSum.Sort();
for (int i = 0; i < size3; i++)
{
//Bbibupaem ponautenen
int a = rnd.Next(0, size3 / 2);
int b = rnd.Next(@, size3 / 2);
p.Add(newPopulation[a]);
p.Add(newPopulation[b]);

//KpoccoBep
int ¢ = rnd.Next(@, 2);
if (c == 9)
{
parents.Add(p[@]);
}
else
{
parents.Add(p[1]);
}
}
}
public void Mutation()
{
for (int i = 0; i < size3; i++)
{
for (int j = @; j < size; j++)
{

int value = rnd.Next(@, size);
if (value == 0)



{
double ¢ =// ot -1 po 1

parents[i][size,size] = c;
}

}
fitnessSum.Add(parents.Cast<double>().Sum());

¥
}
}
}

Description (what program do):

1) Set 30 random points on 10-d space;

2) Calculate distance matrix of 10-d space;

3) Set 30 random points on 2-d space;

4) Calculate distance matrix of 2-d space;

5) Matrix 10-d minus matrix 2-d;

6) Calculate fitness by summing values from matrix (5);
7) Repeat 3-6 100 times (1-st random generation);

8) Sorting (less — better);

9) Making next generation (truncate sel., uniform cros.);
10) Repeat 4-6 100 times and sort;

11) Repeat 9 and 10 until fitness = 0 or fitness not changed after 20 gen.;

Best-Average fitness vs. Generation:

Mapped circles from surface of a hypersphere:

(1-from first generation; 2,3,4-from intermediate generations; 5-from
last generation)



