4 Task Bakunovich lvan

class Dimension

{

Source code

public double[,] _1@DMatrix; // Points of 10D graphic
public double[,] _l1@DMatrixDistances; // Distances between points of 10D graphic
public double[,] _2DMatrix; // Points of 2D graphic
public double[,] _2DMatrixDistances; // Distances between points of 2D graphic
public List<double[,]> List_2DMatrix; // Generation
public double[,] fittnessMatrix; // Difference between 10D and 2D distances
public List<double> GenerationFittnesslList; // Fittnesses of whole generation
public List<double> MinGenerationFittness; // Minimum fitness in every generation
public List<double> AvgGenerationFittness; // Average fittness in every
generation

const int _10D = 10;
const int _2D = 2;
public readonly int numberOfPoints = 30;
const int ChromosomesNumber = 100;
#region 1initialization and finding distance matrix
public void GenerateMatrix()
{

Random rnd = new Random();

_1@DMatrix = new double[numberOfPoints, _10D];

for(int i = @; i < numberOfPoints; i++)

for(int j = @; j < _10D; j++)
_10DMatrix[i, j] = rnd.Next(@, 2001);

_10DMatrix = NormalizeRandom(_1@DMatrix, _1@D);

_10DMatrixDistances = new double[numberOfPoints, numberOfPoints];

for (int i = @; i < numberOfPoints; i++)

for (int j = ©; j < numberOfPoints; j++)

_1oDMatrixDistances[i, j] = FindDistanceND(i, j, _1eD, _1@DMatrix);
_10DMatrixDistances = NormalizeDistance(_l1@DMatrixDistances);
GenerationFittnessList = new List<double>();

List_2DMatrix = new List<double[,]>();
int iter = 0;
while (iter < 100)
{
Generate2DMatrix();
FindFitness();
List_2DMatrix.Add(_2DMatrix);
iter++;
}
MinGenerationFittness = new List<double>();
AvgGenerationFittness = new List<double>();
MinGenerationFittness.Add(GenerationFittnessList.Min());
AvgGenerationFittness.Add(GenerationFittnessList.Average());
}
void Generate2DMatrix()
{

Ran

dom rnd = new Random();

2DMatrix = new double[numberOfPoints, _2D];

¥or‘

(int i = @; i < numberOfPoints; i++)
for (int j = @; j < _2D; j++)
_2DMatrix[i, j] = rnd.Next(e, 2001);

_2DMatrix = NormalizeRandom(_2DMatrix, _2D);
2DMatrixDistances = new double[numberOfPoints, numberOfPoints];

¥or‘

(int i = @; i < numberOfPoints; i++)
for (int j = ©; j < numberOfPoints; j++)
_2DMatrixDistances[i, j] = FindDistanceND(i, j, _2D, _2DMatrix);

_2DMatrixDistances = NormalizeDistance(_2DMatrixDistances);

}

int FindDistanceND(int i , int j, int size, double[,] _1@DMatr)

{
if (i == j) return 0;
int num = 0;
for (int k = 0; k < size; k++)
num += (int)Math.Pow(_1@DMatr[i, k] - _1@DMatr[j, k], 2);
return (int)Math.Sqrt(num);
}
double[,] NormalizeDistance(double[,] mat)
{
double max = mat.Cast<double>().Max();
for(int i = @; i < numberOfPoints; i++)
for(int j = ©; j < numberOfPoints; j++)
mat[i, j] /= max;
return mat;
}
double[,] NormalizeRandom(double[,] mat, int size)
{
for(int i = @; i < numberOfPoints; i++)
for(int j = @; j < size; j++)
{
mat[i, j] /= 1000;
if (mat[i, j] == 1) mat[i, j] = ©;
else if (mat[i, j] < 1) mat[i, j] = -mat[i, j];
else mat[i, j] -= 1;
}
return mat;
}
public void FindFitness()
{

fittnessMatrix = new double[numberOfPoints, numberOfPoints];
double fittness = 0;
for (int i = @; i < numberOfPoints; i++)
for (int j = ©; j < numberOfPoints; j++)
fittnessMatrix[i, j] = _1@DMatrixDistances[i, j] -
_2DMatrixDistances[i, j];
for (int i = @; i < numberOfPoints; i++)
for (int j = ©; j < numberOfPoints; j++)
fittness += fittnessMatrix[i, j];
GenerationFittnessList.Add(fittness);

}
#endregion

public void MainCicle()
{

}

SortPopulation();

#region Sorting

public void SortPopulation()

{
int[] keys = new int[ChromosomesNumber];
for (int i = @; i < ChromosomesNumber; i++) keys[i] = i;
Array.Sort(GenerationFittnessList.ToArray(), keys);
List<double[,]> sorted2DMatrix = new List<double[,]>();
for (int i = @; i < ChromosomesNumber; i++)

sorted2DMatrix.Add(FindKMatrix(keys[i]));

List_2DMatrix = null;

List_2DMatrix = sorted2DMatrix;
}

public double[,] FindKMatrix(int k)
{

for (int i = @; i < numberOfPoints; i++)
if (i == k) return List_2DMatrix[i];
return null;

}
#tendregion

public void UniformCrossover()

{

}

public bool Uslovie()

¢ if (MinGenerationFittness.Last() == @) return false;
return true;

}

class Program

{
static void Main(string[] args)
{
Dimension obj = new Dimension();
obj.GenerateMatrix();
for (int i = @; i < obj.numberOfPoints; i++)
{
for (int j = ©; j < obj.numberOfPoints; j++)
Console.Write("{©} ", obj._l@DMatrixDistances[i, j]);
Console.Write("\n");
}
}

