
4 Task Bakunovich Ivan

Source code

class Dimension
 {
 public double[,] _10DMatrix; // Points of 10D graphic
 public double[,] _10DMatrixDistances; // Distances between points of 10D graphic
 public double[,] _2DMatrix; // Points of 2D graphic
 public double[,] _2DMatrixDistances; // Distances between points of 2D graphic
 public List<double[,]> List_2DMatrix; // Generation
 public double[,] fittnessMatrix; // Difference between 10D and 2D distances
 public List<double> GenerationFittnessList; // Fittnesses of whole generation
 public List<double> MinGenerationFittness; // Minimum fitness in every generation
 public List<double> AvgGenerationFittness; // Average fittness in every
generation
 const int _10D = 10;
 const int _2D = 2;
 public readonly int numberOfPoints = 30;
 const int ChromosomesNumber = 100;

 #region initialization and finding distance matrix

 public void GenerateMatrix()
 {
 Random rnd = new Random();
 _10DMatrix = new double[numberOfPoints, _10D];
 for(int i = 0; i < numberOfPoints; i++)
 for(int j = 0; j < _10D; j++)
 _10DMatrix[i, j] = rnd.Next(0, 2001);
 _10DMatrix = NormalizeRandom(_10DMatrix, _10D);
 _10DMatrixDistances = new double[numberOfPoints, numberOfPoints];
 for (int i = 0; i < numberOfPoints; i++)
 for (int j = 0; j < numberOfPoints; j++)
 _10DMatrixDistances[i, j] = FindDistanceND(i, j, _10D, _10DMatrix);
 _10DMatrixDistances = NormalizeDistance(_10DMatrixDistances);
 GenerationFittnessList = new List<double>();
 List_2DMatrix = new List<double[,]>();
 int iter = 0;
 while (iter < 100)
 {
 Generate2DMatrix();
 FindFitness();
 List_2DMatrix.Add(_2DMatrix);
 iter++;
 }
 MinGenerationFittness = new List<double>();
 AvgGenerationFittness = new List<double>();
 MinGenerationFittness.Add(GenerationFittnessList.Min());
 AvgGenerationFittness.Add(GenerationFittnessList.Average());
 }

 void Generate2DMatrix()
 {
 Random rnd = new Random();
 _2DMatrix = new double[numberOfPoints, _2D];
 for (int i = 0; i < numberOfPoints; i++)
 for (int j = 0; j < _2D; j++)
 _2DMatrix[i, j] = rnd.Next(0, 2001);
 _2DMatrix = NormalizeRandom(_2DMatrix, _2D);
 _2DMatrixDistances = new double[numberOfPoints, numberOfPoints];
 for (int i = 0; i < numberOfPoints; i++)
 for (int j = 0; j < numberOfPoints; j++)
 _2DMatrixDistances[i, j] = FindDistanceND(i, j, _2D, _2DMatrix);
 _2DMatrixDistances = NormalizeDistance(_2DMatrixDistances);

 }

 int FindDistanceND(int i , int j, int size, double[,] _10DMatr)
 {
 if (i == j) return 0;
 int num = 0;
 for (int k = 0; k < size; k++)
 num += (int)Math.Pow(_10DMatr[i, k] - _10DMatr[j, k], 2);
 return (int)Math.Sqrt(num);
 }

 double[,] NormalizeDistance(double[,] mat)
 {
 double max = mat.Cast<double>().Max();
 for(int i = 0; i < numberOfPoints; i++)
 for(int j = 0; j < numberOfPoints; j++)
 mat[i, j] /= max;
 return mat;
 }

 double[,] NormalizeRandom(double[,] mat, int size)
 {
 for(int i = 0; i < numberOfPoints; i++)
 for(int j = 0; j < size; j++)
 {
 mat[i, j] /= 1000;
 if (mat[i, j] == 1) mat[i, j] = 0;
 else if (mat[i, j] < 1) mat[i, j] = -mat[i, j];
 else mat[i, j] -= 1;
 }
 return mat;
 }

 public void FindFitness()
 {
 fittnessMatrix = new double[numberOfPoints, numberOfPoints];
 double fittness = 0;
 for (int i = 0; i < numberOfPoints; i++)
 for (int j = 0; j < numberOfPoints; j++)
 fittnessMatrix[i, j] = _10DMatrixDistances[i, j] -
_2DMatrixDistances[i, j];
 for (int i = 0; i < numberOfPoints; i++)
 for (int j = 0; j < numberOfPoints; j++)
 fittness += fittnessMatrix[i, j];
 GenerationFittnessList.Add(fittness);
 }

 #endregion

 public void MainCicle()
 {
 SortPopulation();
 }

 #region Sorting

 public void SortPopulation()
 {
 int[] keys = new int[ChromosomesNumber];
 for (int i = 0; i < ChromosomesNumber; i++) keys[i] = i;
 Array.Sort(GenerationFittnessList.ToArray(), keys);
 List<double[,]> sorted2DMatrix = new List<double[,]>();
 for (int i = 0; i < ChromosomesNumber; i++)
 sorted2DMatrix.Add(FindKMatrix(keys[i]));
 List_2DMatrix = null;

 List_2DMatrix = sorted2DMatrix;
 }

 public double[,] FindKMatrix(int k)
 {
 for (int i = 0; i < numberOfPoints; i++)
 if (i == k) return List_2DMatrix[i];
 return null;
 }

 #endregion

 public void UniformCrossover()
 {

 }

 public bool Uslovie()
 {
 if (MinGenerationFittness.Last() == 0) return false;
 return true;
 }
 }
}

class Program
 {
 static void Main(string[] args)
 {
 Dimension obj = new Dimension();
 obj.GenerateMatrix();
 for (int i = 0; i < obj.numberOfPoints; i++)
 {
 for (int j = 0; j < obj.numberOfPoints; j++)
 Console.Write("{0} ", obj._10DMatrixDistances[i, j]);
 Console.Write("\n");
 }
 }
 }

