4 exersice-Alex Golodko
Demision on redision from 10d to 2d sphere

SourceCode(Not Finished)

using System;

using System.Collections.Generic;
using System.Ling;

namespace nab6as

public class Classl

{
Random rnd = new Random();
const int size = 30;
const int sizel = 10;
const int size2 2;
const int size3 100;
int[] keys = new int[size3];
List<double[,]> rd2List = new List<double[,]>();
List<double[,]> array2List = new List<double[,]>();
double[,] rd30 = new double[size, sizel];
double[,] rd2 = new double[size, size2];
double[,] array30 = new double[size, size];
double[,] array2 = new double[size, size];
List<double[,]> newPopulation = new List<double[,]>();
List<double[,]> p = new List<double[,]>();
List<double[,]> parents = new List<double[,]>();
List<double[,]> DList = new List<double[,]>();
double[,] D = new double[30,30];

List<double> fitnessSum = new List<double>();
public Classi()
{

for (int i = @0; i < size; i++)

{

for (int j = @; j < sizel; j++)
{
rd30[i, j] = rnd.Next(9, 2001);
if (rd30[i, j] > 1000)
{
rd30[i, j] /= 1000;

else

rd3e[i, j] = rd30[i, j] / 1000 * -1;
}
}
}

double[] dif =
double sum = 0;
double result = 0;

for (int k = 0; k < size; k++)

new double[10];

{
for (int i = 0; i < size; i++)
{
for (int j = ©; j < sizel; j++)
{

dif[j]

Math.Pow((rd30[k, j] - rd30[i, j1), 2);

sum = dif.Sum();



result = Math.Sqrt(sum);
array30[k, i] = result;

}
}
//2-D
for (int 1 = @; 1 < size3; 1++) //TEHEPUPYEM 100 PA3
{
for (int i = 0; i < size; i++)
{
for (int j = 0; j < size2; j++)
{
rd2[i, j] = rnd.Next(@, 2001);
if (rd2[i, j] > 1000)
{
rd2[i, j] /= 1e00;
}
else
rd2[i, j] = rd2[i, j] / 1000 * -1;
}
}
}

double[] difl = new double[size2];
for (int k = @; k < size; k++)
{
for (int i = @; i < size; i++)
{
for (int j = @; j < size2; j++)

{
difi[j] = Math.Pow((rd2[k, j1 - rd2[i, F1), 2);

sum = difl.Sum();
result = Math.Sqrt(sum);
array2[k, i] = result;
}
}

double max30 = array30.Cast<double>().Max();
double max2 = array2.Cast<double>().Max();
for (int i = 0; i < size; i++)

{
for (int j = @; j < size; j++)
{
array30[i, j] = array3e[i, j] / max30;
array2[i, j] = array2[i, j] / max2;
}
}

rd2List.Add(rd2);
array2List.Add(array2);

}

Fitness();
Cross();

}

public void Fitness()

{
for (int i = @; i < size; i++)
{
for (int j = ©; j < size; j++)

{



}

D[i, j] = array30[i, j] + array2[i,
}

¥
fitnessSum.Add(D.Cast<double>().Sum());

DList.Add(D);

public void Cross()

{

}

for(int i

{
keys[i]

0; 1 < size3; i++)

i;

Array.Sort(fitnessSum.ToArray(), keys);
for (int i = 0; 1 < size3; i++)
{

newPopulation.Add(array2List[keys[i]]

}

fitnessSum.Sort();

for (int i = @; i < size3; i++)

{
int a = rnd.Next(@, size3 / 2);
int b = rnd.Next(@, size3 / 2);
p.Add(newPopulation[a]);
p.Add(newPopulation[b]);
int ¢ = rnd.Next(@, 2);

if (c == @)
{

parents.Add(p[@]);
}
else
{

parents.Add(p[1]);
}

}

public void Mutation()

{

}

for (int i = 0; i < size3; i++)
{
for (int j = ©; j < size; j++)
{
int value = rnd.Next(@, size);
if (value == 0)
{
double c =
parents[i][size,size] = c;

}
fitnessSum.Add(parents.Cast<double>()

}

jls

)s

-sum());



