Kirill Zabrodsky Exsercise 4 NOT END

Demission on reduction from 10D to 2D sphere
using System;

using System.Collections.Generic;

using System.Ling;

namespace lab5

{

public class Classl

{
Random rnd = new Random();
const int size = 30;
const int sizel = 10;
const int size2 2;
const int size3 100;
int[] keys = new int[size3];
List<double[,]> rd2List = new List<double[,]>();
List<double[,]> array2List = new List<double[,]>();
double[,] rd30 = new double[size, sizel];
double[,] rd2 = new double[size, size2];
double[,] array30 = new double[size, size];
double[,] array2 = new double[size, size];
List<double[,]> newPopulation = new List<double[,]>();
List<double[,]> p = new List<double[,]>();
List<double[,]> parents = new List<double[,]>();
List<double[,]> DList = new List<double[,]>();
double[,] D = new double[30,30];

List<double> fitnessSum = new List<double>();
public Classi()
{

for (int i = @; i < size; i++)

{

for (int j = @; j < sizel; j++)
{
rd30[i, j] = rnd.Next(9, 2001);
if (rd30[i, j] > 1000)
{
rd30[i, j] /= 1000;

else

{
rd3e[i, j] = rd3e[i, j] / 1000 * -1;

}
}
double[] dif = new double[10];
double sum = ©;
double result = 0;
for (int k = @; k < size; k++)

{
for (int i = 0; i < size; i++)
{
for (int j = 0; j < sizel; j++)
{
dif[j] = Math.Pow((rd30[k, j] - rd30[i, j1), 2);
}

sum = dif.Sum();
result = Math.Sqrt(sum);



array30[k, i] = result;

}
}
for (int 1 = 0; 1 < size3; 1++)
{
for (int i = @0; i < size; i++)
{
for (int j = 0; j < size2; j++)
{
rd2[i, j] = rnd.Next(0, 2001);
if (rd2[i, j] > 1000)
{
rd2[i, j] /= 1000;
else
{
rd2[i, j] = rd2[i, j] / 1000 * -1;
}
}
}

double[] difl = new double[size2];
for (int k = 0; k < size; k++)
{
for (int i = @; i < size; i++)
{
for (int j = @; j < size2; j++)

{
difi[j] = Math.Pow((rd2[k, j] - rd2[i, j1), 2)

sum = difl.Sum();
result = Math.Sqrt(sum);
array2[k, i] = result;

}

}
double max30 = array30.Cast<double>().Max();

double max2 = array2.Cast<double>().Max();
for (int i = 0; i < size; i++)

{
for (int j = @; j < size; j++)
{
array30[i, j] = array3e[i, j] / max30;
array2[i, j] = array2[i, j] / max2;
}
}

rd2List.Add(rd2);
array2List.Add(array2);

}
Fitness();
Cross();
//Mutation();
}
public void Fitness()
{
for (int i = @; i < size; i++)
{
for (int j = 0; j < size; j++)
{
D[i, j] = array30[i, j] + array2[i, j];
}

}

)



fitnessSum.Add(D.Cast<double>().Sum());
DList.Add(D);

}
public void Cross()
{
for(int i = @0; i < size3; i++)
keys[i] = 1i;
}

Array.Sort(fitnessSum.ToArray(), keys);
for (int i = @; 1 < size3; i++)
{

newPopulation.Add(array2List[keys[i]]);
}
fitnessSum.Sort();
for (int i = @; i < size3; i++)

{

int a = rnd.Next(@, size3 / 2);
int b = rnd.Next(@, size3 / 2);
p.Add(newPopulation[a]);
p.Add(newPopulation[b]);
int ¢ = rnd.Next(@, 2);
if (c == 9)
{

parents.Add(p[@]);

}

else

{
parents.Add(p[1]);
}
}

public void Mutation()
{ for (int i = @; i < size3; i++)
{ for (int j = 0; j < size; j++)
¢ int value = rnd.Next(@, size);
if (value == 0)

double c¢ =(-1;1)
parents[i][size,size] = c;
}
}
fitnessSum.Add(parents.Cast<double>().Sum());
}
}
}
}



