
10/27 - Semenyuk Zhenya

Limits are:

Bag size limit = 10000
Amount of each item limit = 100

Item Price Volume

1 6 4

2 3 2

3 6 7

4 6 2

5 10 4

6 10 2

7 7 5

8 10 10

9 10 1

10 10 3

11 4 2

12 2 9

13 6 5

14 5 8

15 6 1

16 7 2

17 3 7

18 10 7

19 4 5

20 1 7

Generation Average Max

0 6067,175 7317

5 8805 10097

10 10279,1 10724

15 11096,225 11380

20 11385,525 11535

25 11623,825 11698

30 11694,65 11698

35 11696,6 11716

40 11716 11716

45 11712,6 11716

item (number)

Chromosome 1
(amount of
items)

Chromosome 2
(amount of
items)

Chromosome 3
(amount of
items)

Chromosome 4
(amount of
items)

Chromosome 5
(amount of
items)

Generation 0

item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 14 9 72 5 95

2 88 97 21 32 28

3 34 30 52 46 61

4 47 47 98 39 61

5 93 56 73 50 61

6 55 25 55 98 18

7 94 73 35 61 33

8 76 70 12 29 76

9 61 45 70 12 42

10 54 99 77 91 46

11 87 91 69 69 68

12 35 78 71 37 67

13 99 94 4 87 50

14 69 22 51 87 69

15 26 30 74 67 96

16 47 70 32 42 67

17 3 70 37 1 92

18 20 68 90 84 49

19 82 41 67 65 19

20 56 89 23 96 33

Generation 15
item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 95 95 95 95 95

2 86 86 86 32 32

3 83 83 83 28 83

4 95 68 80 95 95

5 98 93 93 93 93

6 93 93 99 99 99

7 99 97 94 97 97

8 99 99 99 99 99

9 94 94 94 94 94

10 95 93 95 95 95

11 87 87 87 87 87

12 45 67 45 45 45

13 89 89 89 89 89

14 69 96 69 76 76

15 96 96 96 96 96

16 88 88 88 88 88

17 82 82 82 82 82

18 92 92 32 92 92

19 67 67 67 67 67

20 58 58 52 58 58

Generation 25

item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 95 95 95 95 95

2 86 86 86 86 86

3 95 95 95 95 95

4 95 95 95 95 95

5 93 93 93 93 93

6 99 99 99 99 99

7 99 99 99 99 99

8 99 99 99 99 99

9 94 94 94 94 94

10 95 94 95 95 93

11 87 87 87 87 87

12 67 67 67 67 67

13 96 96 96 96 96

14 99 99 96 96 99

15 96 96 96 96 96

16 88 88 88 88 88

17 82 82 82 82 82

18 92 92 92 92 92

19 67 67 67 67 67

20 58 58 58 58 58

Generation 35

item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 95 95 95 95 95

2 86 86 86 86 86

3 95 95 95 95 95

4 95 95 95 95 95

5 93 93 93 93 93

6 99 99 99 99 99

7 99 99 99 99 99

8 99 99 99 99 99

9 94 94 94 94 94

10 95 95 95 95 95

11 87 87 87 87 87

12 67 67 67 67 67

13 99 99 99 99 99

14 99 99 99 99 99

15 96 96 96 96 96

16 88 88 88 88 88

17 82 82 82 82 82

18 92 92 92 92 92

19 67 67 67 67 67

20 58 58 58 58 58

Generation 45

item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 95 95 95 95 95

2 86 86 86 86 86

3 95 95 95 95 95

4 95 95 95 95 95

5 93 93 93 93 93

6 99 99 99 99 99

7 99 99 99 99 99

8 99 99 99 99 99

9 94 94 94 94 94

10 95 95 95 95 95

11 87 87 87 87 87

12 67 67 67 67 67

13 99 99 99 99 99

14 99 99 99 99 99

15 96 96 96 96 96

16 88 88 88 88 88

17 82 82 82 82 82

18 92 92 92 92 92

19 67 67 67 67 67

20 58 58 58 58 58

Source code

Constants.cs

namespace trip
{
 public static class Constants
 {
 public const int GENES_NUMBER = 20;
 public const int CHROMOSOMES_NUMBER = 40;
 public const int BAG_SIZE = 10000;
 public const int AMOUNT_LIMIT = 100;
 }
}

Chromosome.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static trip.Constants;

namespace trip
{
 public class Item
 {
 public int Price { get; set; }
 public int Volume { get; set; }

 public Item(Random rnd)
 {
 Volume = rnd.Next(10) + 1;
 Price = rnd.Next(10) + 1;
 }

 public static List<Item> Get(Random rnd)
 {

 var items = new List<Item>();

 for (int i = 0; i < GENES_NUMBER; i++)
 items.Add(new Item(rnd));

 return items;
 }
 }

 public class Chromosome : IComparable<Chromosome>
 {
 public List<Item> items { get; set; }
 public List<int> Amounts { get; set; }
 public int BagVolume { get; set; }
 public int BagPrice { get; set; }

 public Chromosome(Random rnd, List<Item> bag)
 {
 items = bag;
 Amounts = new List<int>();
 int limit = AMOUNT_LIMIT,//BAG_SIZE / items.Min(x => x.Volume),
 i;

 for (i = 0; i < GENES_NUMBER; i++)
 Amounts.Add(rnd.Next(limit));

 CalculateBagVolumeAndPrice();
 }

 public void CalculateBagVolumeAndPrice()
 {
 BagVolume = 0;
 BagPrice = 0;

 for (int i = 0; i < GENES_NUMBER; i++)
 {
 BagVolume += items.ElementAt(i).Volume *
 Amounts.ElementAt(i);
 BagPrice += items.ElementAt(i).Price *
 Amounts.ElementAt(i);
 }
 }

 public int CompareTo(Chromosome compareChromosome)
 {

 if (compareChromosome == null)
 return -1;
 else
 return compareChromosome.BagPrice.CompareTo(BagPrice);
 }

 public Chromosome CreateChild(Chromosome p2, Random rnd)
 {
 int ch;
 Chromosome child = new Chromosome(rnd, new List<Item>(items));
 child.Amounts.Clear();

 for (int j = 0; j < GENES_NUMBER; j++)
 {
 ch = rnd.Next(2);
 if(ch == 1)
 {
 child.Amounts.Add(Amounts.ElementAt(j));
 }
 else
 {
 child.Amounts.Add(p2.Amounts.ElementAt(j));
 }

 }

 //mutation
 for (int j = 0; j < GENES_NUMBER; j++)
 {
 ch = rnd.Next(20);
 if (ch == 10)
 {
 child.Amounts.Insert(j, child.Amounts.ElementAt(j) + rnd.Next(AMOUNT_LIMIT)
% AMOUNT_LIMIT);
 child.Amounts.Remove(child.Amounts.ElementAt(j));

 }
 }
 child.CalculateBagVolumeAndPrice();
 return child;
 }
 }
}

Program.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using static trip.Constants;

namespace trip
{
 class Program
 {
 static void Main(string[] args)
 {
 Random rnd = new Random(DateTime.Now.Millisecond);
 var chromosomes = new List<Chromosome>();
 var childs = new List<Chromosome>();
 // Item mock = new Item(rnd);
 var items = Item.Get(rnd);
 Console.WriteLine("Item's price and volume");
 foreach(var item in items)
 {
 Console.Write("Price = $" + item.Price + ", Volume = " + item.Volume + " ");
 }
 Console.WriteLine();
 int i = 0, j;
 int generation = 0;
 Chromosome p1, p2;

 for (j = 0; j < CHROMOSOMES_NUMBER; j++)
 {
 var chr = new Chromosome(rnd, items);
 if (chr.BagVolume < BAG_SIZE)
 chromosomes.Add(chr);
 else j--;
 }

 double averageFitness;

 while (generation < 50)
 {

 chromosomes.Sort();

 if(generation % 5 == 0)
 {
 Console.WriteLine("---");

 Console.WriteLine("Generation: " + generation);
 for (int k = 0; k < 5; k++)
 {
 var chr = chromosomes.ElementAt(k);
 Console.WriteLine("$" + chr.BagPrice + " - V:" + chr.BagVolume);
 for (int g = 0; g < GENES_NUMBER; g++)
 Console.Write(chr.Amounts.ElementAt(g) + " ");
 Console.WriteLine();
 }
 averageFitness = chromosomes.Average(x => x.BagPrice);
 Console.WriteLine(averageFitness);
 }

 for (j = 0; j < CHROMOSOMES_NUMBER; j++)
 {
 p1 = chromosomes.ElementAt(rnd.Next(CHROMOSOMES_NUMBER / 2));
 p2 = chromosomes.ElementAt(rnd.Next(CHROMOSOMES_NUMBER / 2));
 var child = p1.CreateChild(p2, rnd);

 if (child.BagVolume < BAG_SIZE)
 childs.Add(child);
 else j--;
 }

 chromosomes.Clear();
 chromosomes.AddRange(childs);
 childs.Clear();

 generation++;
 }
 }
 }
}

