10/27 - Semenyuk Zhenya
Limits are:

Bag size limit = 10000
Amount of each item limit = 100

Item Price Volume
1 6 4
2 3 2
3 6 7
4 6 2
5 10 4
6 10 2
7 7 5
8 10 10
9 10 1
10 10 3
11 4 2
12 2 9
13 6 5
14 5 8
15 6 1
16 7 2
17 3 7
18 10 7
19 4 5
20 1 7



Generation Average

Max

0 6067,175 7317
5 8805 10097
10 10279,1 10724
15 11096,225 11380
20 11385,525 11535
25 11623,825 11698
30 11694,65 11698
35 11696,6 11716
40 11716 11716
45 11712,6 11716
Average and Max
13000
11000
9000
7000
5000
0 10 20 a0
Generation

Chromosome 1
(amount of

item (number) items)

Generation 0

item (number) Chromosome 1

1

2
3
4

14
88
34
47

Chromosome 2
(amount of
items)

Chromosome 2
9

97

30

47

Chromosome 3
(amount of
items)

Chromosome 3
72
21
52
98

40

Chromosome 4
(amount of
items)

Chromosome 4
5

32

46

39

— fyerage
— Max

Chromosome 5
(amount of
items)

Chromosome 5
95
28
61
61



5 93 56 73 50 61
6 55 25 55 98 18
7 94 73 35 61 33
8 76 70 12 29 76
9 61 45 70 12 42
10 54 99 77 91 46
11 87 91 69 69 68
12 35 78 71 37 67
13 99 94 4 87 50
14 69 22 51 87 69
15 26 30 74 67 96
16 47 70 32 42 67
17 3 70 37 1 92
18 20 68 90 84 49
19 82 41 67 65 19
20 56 89 23 96 33

Generation 15

item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 95 95 95 95 95
2 86 86 86 32 32
3 83 83 83 28 83
4 95 68 80 95 95
5 98 93 93 93 93
6 93 93 99 99 99
7 99 97 94 97 97
8 99 99 99 99 99
9 94 94 94 94 94
10 95 93 95 95 95
11 87 87 87 87 87
12 45 67 45 45 45
13 89 89 89 89 89
14 69 96 69 76 76
15 96 96 96 96 96
16 88 88 88 88 88
17 82 82 82 82 82



18 92 92 32 92 92
19 67 67 67 67 67
20 58 58 52 58 58

Generation 25

item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 95 95 95 95 95
2 86 86 86 86 86
3 95 95 95 95 95
4 95 95 95 95 95
5 93 93 93 93 93
6 99 99 99 99 99
7 99 99 99 99 99
8 99 99 99 99 99
9 94 94 94 94 94
10 95 94 95 95 93
11 87 87 87 87 87
12 67 67 67 67 67
13 96 96 96 96 96
14 99 99 96 96 99
15 96 96 96 96 96
16 88 88 88 88 88
17 82 82 82 82 82
18 92 92 92 92 92
19 67 67 67 67 67
20 58 58 58 58 58

Generation 35

item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 95 95 95 95 95
2 86 86 86 86 86
3 95 95 95 95 95
4 95 95 95 95 95
5 93 93 93 93 93



6 99 99 99 99 99
7 99 99 99 99 99
8 99 99 99 99 99
9 94 94 94 94 94
10 95 95 95 95 95
11 87 87 87 87 87
12 67 67 67 67 67
13 99 99 99 99 99
14 99 99 99 99 99
15 96 96 96 96 96
16 88 88 88 88 88
17 82 82 82 82 82
18 92 92 92 92 92
19 67 67 67 67 67
20 58 58 58 58 58

Generation 45

item (number) Chromosome 1 Chromosome 2 Chromosome 3 Chromosome 4 Chromosome 5

1 95 95 95 95 95
2 86 86 86 86 86
3 95 95 95 95 95
4 95 95 95 95 95
5 93 93 93 93 93
6 99 99 99 99 99
7 99 99 99 99 99
8 99 99 99 99 99
9 94 94 94 94 94
10 95 95 95 95 95
11 87 87 87 87 87
12 67 67 67 67 67
13 99 99 99 99 99
14 99 99 99 99 99
15 96 96 96 96 96
16 88 88 88 88 88
17 82 82 82 82 82



18 92 92 92
19 67 67 67
20 58 58 58

Source code
Constants.cs

namespace trip

{

public static class Constants
{
public const int GENES_NUMBER = 20;
public const int CHROMOSOMES_NUMBER = 40;
public const int BAG_SIZE = 10000;
public const int AMOUNT_LIMIT = 100;

}
}

Chromosome.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using static trip.Constants;

namespace trip

{

public class Item

{
public int Price { get; set; }
public int Volume { get; set; }

public ltem(Random rnd)

{
Volume = rnd.Next(10) + 1;

Price = rnd.Next(10) + 1;
}

public static List<ltem> Get(Random rnd)

{

92
67
58

92
67
58



var items = new List<ltem>();

for (inti=0;i < GENES_NUMBER; i++)
items.Add(new ltem(rnd));

return items;

}
}

public class Chromosome : IComparable<Chromosome>
{

public List<ltem> items { get; set; }

public List<int> Amounts { get; set; }

public int BagVolume { get; set; }

public int BagPrice { get; set; }

public Chromosome(Random rnd, List<ltem> bag)

{
items = bag;
Amounts = new List<int>();
int limit = AMOUNT _LIMIT,//BAG_SIZE / items.Min(x => x.Volume),

for (i=0; i < GENES_NUMBER; i++)
Amounts.Add(rnd.Next(limit));

CalculateBagVolumeAndPrice();

}
public void CalculateBagVolumeAndPrice()
{
BagVolume = 0;
BagPrice = 0;
for (inti=0;i < GENES_NUMBER; i++)
{
BagVolume += items.ElementAt(i).Volume *
Amounts.ElementAt(i);
BagPrice += items.ElementAt(i).Price *
Amounts.ElementAt(i);
}
}

public int CompareTo(Chromosome compareChromosome)

{



if (compareChromosome == null)
return -1;
else
return compareChromosome.BagPrice.CompareTo(BagPrice);

}

public Chromosome CreateChild(Chromosome p2, Random rnd)

{
int ch;
Chromosome child = new Chromosome(rnd, new List<ltem>(items));
child.Amounts.Clear();

for (intj = 0; j < GENES_NUMBER,; j++)
{
ch = rnd.Next(2);
if(ch == 1)
{
child.Amounts.Add(Amounts.ElementAt(j));

}

else

{
child.Amounts.Add(p2.Amounts.ElementAt(j));

}
}

/Imutation
for (intj = 0; j < GENES_NUMBER,; j++)
{
ch = rnd.Next(20);
if (ch == 10)
{
child.Amounts.Insert(j, child.Amounts.ElementAt(j) + rnd.Next(AMOUNT _LIMIT)
% AMOUNT _LIMIT);
child.Amounts.Remove(child.Amounts.ElementAt()));

}

}
child.CalculateBagVolumeAndPrice();

return child;
Y
}
}

Program.cs



using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;
using static trip.Constants;

namespace trip

{

class Program

{

static void Main(string[] args)
{
Random rnd = new Random(DateTime.Now.Millisecond);
var chromosomes = new List<Chromosome>();
var childs = new List<Chromosome>();
/l ltem mock = new Item(rnd);
var items = Iltem.Get(rnd);
Console.WriteLine("ltem's price and volume");
foreach(var item in items)

{

Console.Write("Price = $" + item.Price + ", Volume =" + item.Volume + " ");

}

Console.WriteLine();
inti=0,j;

int generation = 0;
Chromosome p1, p2;

for (j = 0; j < CHROMOSOMES_NUMBER; j++)
{

var chr = new Chromosome(rnd, items);

if (chr.BagVolume < BAG_SIZE)
chromosomes.Add(chr);

else j--;

}

double averageFitness;

while (generation < 50)

{

chromosomes.Sort();

if(generation % 5 == 0)
{

Console.WriteLine(" ");




Console.WriteLine("Generation: " + generation);

for (intk = 0; k < 5; k++)

{
var chr = chromosomes.ElementAt(k);
Console.WriteLine("$" + chr.BagPrice + " - V:" + chr.BagVolume);
for (int g = 0; g < GENES_NUMBER; g++)

Console.Write(chr.Amounts.ElementAt(g) + " ");

Console.WriteLine();

}

averageFitness = chromosomes.Average(x => x.BagPrice);

Console.WriteLine(averageFitness);

for (j = 0; j < CHROMOSOMES_NUMBER; j++)

{
p1 = chromosomes.ElementAt(rnd.Next(CHROMOSOMES_NUMBER / 2));
p2 = chromosomes.ElementAt(rnd.Next(CHROMOSOMES_NUMBER / 2));
var child = p1.CreateChild(p2, rnd);

if (child.BagVolume < BAG_SIZE)
childs.Add(child);
else j--;

}

chromosomes.Clear();
chromosomes.AddRange(childs);
childs.Clear();

generation++;



