Knapsack Problem
Task:

20 items in the store with price and size of each. We have backpack in
which you need to put a certain amount of each item. We need to get
maximum price of items from our backpack without overflow.

Code:

Classl.cs

using System;

using System.Collections.Generic;
using System.Ling;

namespace naba_6

{
class TableOfParam

{
public Random rnd = new Random();
public int[] xPrice = new int [20];
public int[] yVolume = new int [20];
public TableOfParam()
{
for (int i = 0; i < 20; i++)
{
xPrice[i] = rnd.Next(1, 11);
Console.Write(xPrice[i] + " ");
}
Console.WriteLine();
for (int i = 0; i < 20; i++)

yVolume[i] = rnd.Next(1, 11);
Console.Write(yVolume[i] + " ");
}
}
}

class Classil
{
TableOfParam tB = new TableOfParam();
Random rnd = new Random();
const int gen = 20;
const int chromosome = 40;
const int sizeOfBag = 10000;
int[,] population = new int [chromosome, gen];
int[,] newPopulation = new int[chromosome, gen];
int[] fitness = new int[chromosome];
int[] keys = new int[chromosome];
public Classi()
{
//co3paaHue nokoneHus
int sumPrice;
int sumVolume;
for (int i = @; i < chromosome; i++)
{
sumPrice = 9;
sumVolume = 0;
while (fitness[i] == @)
{
for (int j = 0; j < gen; j++)



population[i, j] = rnd.Next(1, 101);
sumPrice += (tB.xPrice[j] * population[i, j]);
sumVolume += (tB.yVolume[j] * population[i, j]);

}

//c4ntaem PuTHECH NepBOro MOKOAEeHUA

fitness[i] = (sumVolume > sizeOfBag) ? @ : sumPrice;

}
}
newPopulation = population;
}
public void Cross()
{
//KpoccuHrosep
for (int i = @; i < chromosome; i++)
{

int a = rnd.Next(@, chromosome / 2);
int b = rnd.Next(@, chromosome / 2);
for (int j = @; j < gen; j++)
{
population[i, j] = (rnd.Next(®, 2) == @) ? newPopulation[a, j] :
newPopulation[b, j];

}
}

public void Mutation()
{
int sumPrice;
int sumVolume;
for (int i = @; i < chromosome; i++)
{
sumPrice = 0;
sumVolume = 0;
for (int j = @; j < gen; j++)

{
int value = rnd.Next(®, gen);
population[i, j] = (value == @) ? rnd.Next(l, 101) : population[i, j];
sumPrice += (tB.xPrice[j] * population[i, j]);
sumVolume += (tB.yVolume[j] * population[i, jI);
¥
fitness[i] = (sumVolume > sizeOfBag) ? © : sumPrice;
¥
//copTupoBka
for (int i = @; i < chromosome; i++)
{
keys[i] = 1i;

Array.Sort(fitness, keys);
for (int i = @, n = chromosome - 1; i < chromosome; i++, n--)

{
for (int j = @; j < gen; Jj++)
{
newPopulation[i, j] = population[keys[n], j];
}
}
}
public int GetMax()
{
return fitness.Max();
}

public int GetAverage()



{

return (int)fitness.Average();

}

public int[,] GetPopulation()
{
return newPopulation;
}
public int[,] GetFirstPopulation()
{
return population;
}
}
}
Program.cs
using System;
using System.Collections.Generic;
using System.IO;
using System.Ling;

namespace naba_6

{

class Program

{

static void Main(string[] args)

{

List<int[,]> populations = new List<int[,]>();

Classl cl = new Classi();
populations.Add(cl.GetFirstPopulation());
for (int j = 0; j < 20; j++)

{
using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"FirstChrom.txt", true))
{
file.WriteLine(populations[@][0, j]);
}
}
int i = -1;
while (i < 100)
{ .
i++;
cl.Cross();
cl.Mutation();
populations.Add(cl.GetPopulation());
using (System.IO.StreamWriter file = new
true))
{
file.WriteLine(cl.GetMax());

}
using (System.IO.StreamWriter file

{
file.WritelLine(cl.GetAverage());

}

using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"Iterations.txt", true))
{
file.WriteLine(i);

}

new
true))

}
for (int j = @; j < 20; j++)
{

true))

using (System.IO.StreamWriter file = new

{

System.IO.StreamWriter(@"Maximum.txt",

System.IO.StreamWriter(@"Average.txt",

System.IO.StreamWriter(@"M1Chrom.txt",



file.WriteLine(populations[25][@, j]);

}
using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"M2Chrom.txt",
true))
{
file.WritelLine(populations[50][0, j]);
}
using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"M3Chrom.txt",
true))
{
file.WriteLine(populations[75][@, j1);
}
using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"LastChrom.txt",
true))
{
file.WriteLine(populations[i][@, j1);
}
}
}
}
}
Description:
1 20
¥Price . . =
yWVolume
1 20 F
n1 - 0 1
. (size=10000)
. * truncate sel.+uniform
LIOSS.
] L] .
child
\ :
nao 40

XPrice — price of each item;
yVolume - size of each item;
BACKPACK size = 10000;



Meaning (nl,1...) =random from 1 to 100;

sumPrice — full price of chromosome;

sumVolume — full size of chromosome;

F(fitness) = sumPrice ( if sumVolume > backpack size than F=0);

Making next generations by truncate selection and uniform crossover.

Static table of price and size:

3 3 8 8
2 6 9 2

84
73
77
77
77

Best chromosome from first, last and 3 intermediate generations:

91
50
92
92
81

Gra

100004

50004

80001

70004

6000

5000+

40001

30004

20004

1000

43 18
72 6l
72 76
72 76
100 100

95
94
94
94
94

3
4

22
33
71
71
41

6
1

67
31
31
92
82

5
4

44
08
08
08
08

8
3

77
90
67
67
72

9
30
88
88
91

62
92
20
65
65

30
98
98
98
98

43
47
92
92
92

1
96
100
100
100

ph of best and average fitness — generations:

|
T
20

|
T
25

|
T
30

|
T
35

90
29
100
100
100

95
75
75
75
75

8
99
99
99
99

65
72
72
72
93

73

90
90
90

91
45
94
90
90



Now let’s try some experiment:

Static table of price and size:
10 10 10 10 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(price of 1-10 items = 10, of 10-20 items =1);
(valume of all items = 1);
(size of backpack = 1200);

Now we can check our algorism. If an algorism is right, final chromosome
will chose first half of items (because first half has better price for each item);

Lets check:

Best chromosome from first, last and 3 intermediate generations:
‘ First 48 98 91 46 77 3 39 83 8 19 27 9 72 B8 34 23 24 36 28 58
2 770077 67 43 74 93 F0 87 91 92 23 25 8 31 85 69 34 8 51 62
3 5 77 67 79 74 93 J0 87 85 92 68 21 8 31 12 69 1 81 84 20
4 95 22 o7 79 74 89 JO &/ @85 92 68 19 8 31 12 69 6 81 &84 25
last 55 51 &7/ 79 74 89 99 87 B85 92 68 B8 6 31 16 24 21 81 38 125

Graph of best and average fitness — generations:

+y
DDDDDD 2

000000

000000

000000

DDDDDD

000000

10 15 20 25 30 3

So, we can see that our algorism has chosen the first half of items.
This algorism is so good.



