Knapsack Problem
Task:

20 items in the store with price and size of each. We have backpack in
which you need to put a certain amount of each item. We need to get
maximum price of items from our backpack without overflow.

Description:
1 20
XPrice
yVolume
1 20 F
n1 . . - 1
. BACKPACK
. (size=10000)
. * truncate sel.+uniform
Lross.
. . \ child
n4o 40

XPrice — price of each item;

yVolume - size of each item;

BACKPACK size = 10000;

Meaning (nl,1...) = random from 1 to 100;

sumPrice — full price of chromosome;

sumVolume — full size of chromosome;

F(fitness) = sumPrice (if sumVolume > backpack size than F=0);

Making next generations by truncate selection and uniform crossover.

Code:

Classl.cs

using System;

using System.Collections.Generic;
using System.Ling;

namespace naba_6

{

class TableOfParam

{

}

public Random rnd = new Random();
public int[] xPrice = new int [20];
public int[] yVolume = new int [20];
public TableOfParam()

{
for (1nt i = 0; i< 20; i++)
{
xPrice[i] = rnd.Next(1, 11);
Console.Write(xPrice[i] + " ");
}

Console.WriteLine();
for (int i = 0; i < 20; i++)
{
yVolume[i] = rnd.Next(1, 11);
Console.Write(yVolume[i] + " ");
}
}

class Classl

{

TableOfParam tB = new TableOfParam();
Random rnd = new Random();
const int gen = 20;
const int chromosome = 40;
const int sizeOfBag = 10000;
int[,] population = new int [chromosome, gen];
int[,] newPopulation = new int[chromosome, gen];
int[] fitness = new int[chromosome];
int[] keys = new int[chromosome];
public Classi1()
{
//co3paaHue nokoneHus
int sumPrice;
int sumVolume;
for (int i = @; i < chromosome; i++)

{
sumPrice = 0;
sumVolume = 0;
while (fitness[i] == @)
{
for (int j = ©; j < gen; j++)
{
population[i, j] = rnd.Next(1, 101);
sumPrice += (tB.xPrice[j] * population[i, j]);
sumVolume += (tB.yVolume[j] * population[i, j]);
}
//cynTaem dUTHeCH nepBOro MOKOJEeHUA
fitness[i] = (sumVolume > sizeOfBag) ? © : sumPrice;
}
}

newPopulation = population;

public void Cross()

{
//KpoccuHroBsep
for (int i = @; i < chromosome; i++)
{

int a = rnd.Next(@, chromosome / 2);

int b = rnd.Next(@, chromosome / 2);

for (int j = 0; j < gen; j++)

{

population[i, j] = (rnd.Next(®, 2) == @) ? newPopulation[a, j] :
newPopulation[b, j];
}
}
}

public void Mutation()
{
int sumPrice;
int sumVolume;
for (int i = @; i < chromosome; i++)
{
sumPrice = 0;
sumVolume = ©
for (int j =
{

5 3 < gen; j++)

int value = rnd.Next(®, gen);

population[i, j] = (value == @) ? rnd.Next(1l, 101) : population[i, j];
sumPrice += (tB.xPrice[j] * population[i, j]);

sumVolume += (tB.yVolume[j] * population[i, j1);

}
fitness[i] = (sumVolume > sizeOfBag) ? © : sumPrice;
}
//copTupoBka
for (int i = @; i < chromosome; i++)
{
keys[i] = i;
}

Array.Sort(fitness, keys);
for (int i = @, n = chromosome - 1; i < chromosome; i++, n--)
{

for (int j = ©; j < gen; j++)

{

}
}
}

public int GetMax()
{

return fitness.Max();

}
public int GetAverage()

{

return (int)fitness.Average();

}

public int[,] GetPopulation()
{

return newPopulation;

}
public int[,] GetFirstPopulation()

{

return population;

}

newPopulation[i, j] = population[keys[n], j];

}
}
Program.cs
using System;
using System.Collections.Generic;
using System.IO;
using System.Ling;

namespace naba_6

{

class Program

{

static void Main(string[] args)

{
List<int[,]> populations = new List<int[,]>();
Classl ¢l = new Classi();
populations.Add(cl.GetFirstPopulation());
for (int j = 0; j < 20; j++)

{

using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"FirstChrom.txt", true))
{
file.WriteLine(populations[@][0, j]1);

}

}

int 1 = -1;

while (i < 100)

{ .
i++;
cl.Cross();
cl.Mutation();
populations.Add(cl.GetPopulation());
using (System.IO.StreamWriter file

new System.IO.StreamWriter(@"Maximum.txt",
true))

{
file.WriteLine(cl.GetMax());

}

using (System.IO.StreamWriter file

new System.IO.StreamWriter(@"Average.txt",
true))
{
file.WritelLine(cl.GetAverage());
}
using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"Iterations.txt", true))

{
file.WriteLine(i);
}
}
for (int j = 0; j < 20; j++)
{
using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"M1Chrom.txt",
true))
{
file.WritelLine(populations[25][0, j]1);
}
using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"M2Chrom.txt",
true))
{
file.WritelLine(populations[50][0, j]);
}
using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"M3Chrom.txt",
true))

{
file.WriteLine(populations[75][@, j]);

}

First 84
2 73
3 77
4 77

_ Last 77

tru

¥
}

using (System.IO.StreamWriter file =

e))
{

file.WriteLine(populations[i][@, j]);

}
}
}

Static table of price and size:
5 3 3
b 2 6

Best chromosome from first, last and 3 intermediate generations:

91
50
92
92
81

Graj

10000
5000
3000
7000
6000
5000
4000+
3000
2000+

1000+

8 8
9 2

43 18
72 b6l
72 76
72 76
100 100

95
94
94
94
94

4

22
33
71
71
41

67
31
31
92
82

44
08
08
98
08

77
90
67
67
72

9
30
88
88
91

I
T
30

I
T
35

62
92
20
65
65

30
98
98
98
98

43
47
92
92
92

1
96
100
100
100

ph of best and average fitness — generations:

¥

90
29
100
100
100

95
75
75
75
75

8
a9
99
99
99

65
72
72
72
93

new System.IO.StreamiWriter(@"LastChrom.txt",

73

90
90
90

91
45
94
90
90

Now let’s try some experiment:

Static table of price and size:
10

10 10
1 1

1

10

1

10

1

10
1

10

10

1

10 10 1 1 1

1 1 1 1 1 1 1 1 1 1 1

(price of 1-10 items = 10, of 10-20 items =1);
(valume of all items = 1);
(size of backpack = 1200);

Now we can check our algorism. If an algorism is right, final chromosome
will chose first half of items (because first half has better price for each item);

Lets check:

Best chromosome from first, last and 3 intermediate generations:

First 48
2 77

3 55

4 o5
Last 55

Graph of best and average fitness — generations:

100004

90001+

$000+

7000+

6000+

50004

4000

30004

2000+

1000

98
77
77
22
51

91
67
67
67
67

46
43
79
79
79

77
74
74
74
74

3
93
93
29
29

39
70
70
70
99

[

83
87
87
87
87

the

85 19 27 9 72 88 34 23 24 36 28 58
91 92 23 25 8 31 &85 69 34 & 51 62
8> 92 68 21 8 31 12 &9 1 81 84 20
85 92 68 19 8 31 12 69 6 81 &84 25
85 92 68 88 6 31 16 24 21 &1 38 25

So, we can see that our algorism has chosen
first half of items.
Algorism is correct.

