
Knapsack Problem
Task:

20 items in the store with price and size of each. We have backpack in

which you need to put a certain amount of each item. We need to get

maximum price of items from our backpack without overflow.

Description:

xPrice – price of each item;

yVolume - size of each item;

BACKPACK size = 10000;

Meaning (n1,1…) = random from 1 to 100;

sumPrice – full price of chromosome;

sumVolume – full size of chromosome;

F(fitness) = sumPrice (if sumVolume > backpack size than F=0);

Making next generations by truncate selection and uniform crossover.

Code:
 Class1.cs

using System;
using System.Collections.Generic;
using System.Linq;

namespace лаба_6
{
 class TableOfParam
 {
 public Random rnd = new Random();
 public int[] xPrice = new int [20];
 public int[] yVolume = new int [20];
 public TableOfParam()
 {
 for (int i = 0; i < 20; i++)
 {
 xPrice[i] = rnd.Next(1, 11);
 Console.Write(xPrice[i] + " ");
 }
 Console.WriteLine();
 for (int i = 0; i < 20; i++)
 {
 yVolume[i] = rnd.Next(1, 11);
 Console.Write(yVolume[i] + " ");
 }
 }
 }

 class Class1
 {
 TableOfParam tB = new TableOfParam();
 Random rnd = new Random();
 const int gen = 20;
 const int chromosome = 40;
 const int sizeOfBag = 10000;
 int[,] population = new int [chromosome, gen];
 int[,] newPopulation = new int[chromosome, gen];
 int[] fitness = new int[chromosome];
 int[] keys = new int[chromosome];
 public Class1()
 {
 //создание поколения
 int sumPrice;
 int sumVolume;
 for (int i = 0; i < chromosome; i++)
 {
 sumPrice = 0;
 sumVolume = 0;
 while (fitness[i] == 0)
 {
 for (int j = 0; j < gen; j++)
 {

 population[i, j] = rnd.Next(1, 101);
 sumPrice += (tB.xPrice[j] * population[i, j]);
 sumVolume += (tB.yVolume[j] * population[i, j]);
 }
 //считаем фитнесы первого поколения
 fitness[i] = (sumVolume > sizeOfBag) ? 0 : sumPrice;
 }
 }
 newPopulation = population;
 }

 public void Cross()
 {
 //кроссинговер
 for (int i = 0; i < chromosome; i++)
 {
 int a = rnd.Next(0, chromosome / 2);
 int b = rnd.Next(0, chromosome / 2);
 for (int j = 0; j < gen; j++)
 {
 population[i, j] = (rnd.Next(0, 2) == 0) ? newPopulation[a, j] :
newPopulation[b, j];
 }
 }
 }

 public void Mutation()
 {
 int sumPrice;
 int sumVolume;
 for (int i = 0; i < chromosome; i++)
 {
 sumPrice = 0;
 sumVolume = 0;
 for (int j = 0; j < gen; j++)
 {
 int value = rnd.Next(0, gen);
 population[i, j] = (value == 0) ? rnd.Next(1, 101) : population[i, j];
 sumPrice += (tB.xPrice[j] * population[i, j]);
 sumVolume += (tB.yVolume[j] * population[i, j]);
 }
 fitness[i] = (sumVolume > sizeOfBag) ? 0 : sumPrice;
 }
 //сортировка
 for (int i = 0; i < chromosome; i++)
 {
 keys[i] = i;
 }
 Array.Sort(fitness, keys);
 for (int i = 0, n = chromosome - 1; i < chromosome; i++, n--)
 {
 for (int j = 0; j < gen; j++)
 {
 newPopulation[i, j] = population[keys[n], j];
 }
 }
 }

 public int GetMax()
 {
 return fitness.Max();
 }
 public int GetAverage()
 {
 return (int)fitness.Average();
 }

 public int[,] GetPopulation()
 {
 return newPopulation;
 }
 public int[,] GetFirstPopulation()
 {
 return population;
 }

 }
}

Program.cs
using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;

namespace лаба_6
{
 class Program
 {
 static void Main(string[] args)
 {
 List<int[,]> populations = new List<int[,]>();
 Class1 cl = new Class1();
 populations.Add(cl.GetFirstPopulation());
 for (int j = 0; j < 20; j++)
 {
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"FirstChrom.txt", true))
 {
 file.WriteLine(populations[0][0, j]);
 }
 }
 int i = -1;
 while (i < 100)
 {
 i++;
 cl.Cross();
 cl.Mutation();
 populations.Add(cl.GetPopulation());
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"Maximum.txt",
true))
 {
 file.WriteLine(cl.GetMax());
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"Average.txt",
true))
 {
 file.WriteLine(cl.GetAverage());
 }
 using (System.IO.StreamWriter file = new
System.IO.StreamWriter(@"Iterations.txt", true))
 {
 file.WriteLine(i);
 }
 }
 for (int j = 0; j < 20; j++)
 {
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"M1Chrom.txt",
true))
 {
 file.WriteLine(populations[25][0, j]);
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"M2Chrom.txt",
true))
 {
 file.WriteLine(populations[50][0, j]);
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"M3Chrom.txt",
true))
 {
 file.WriteLine(populations[75][0, j]);
 }

 using (System.IO.StreamWriter file = new System.IO.StreamWriter(@"LastChrom.txt",
true))
 {
 file.WriteLine(populations[i][0, j]);
 }
 }
 }
 }
}

Static table of price and size:

Best chromosome from first, last and 3 intermediate generations:

Graph of best and average fitness – generations:

Now let’s try some experiment:

Static table of price and size:

 (price of 1-10 items = 10, of 10-20 items =1);

 (valume of all items = 1);

 (size of backpack = 1200);

 Now we can check our algorism. If an algorism is right, final chromosome

will chose first half of items (because first half has better price for each item);

 Lets check:

 Best chromosome from first, last and 3 intermediate generations:

Graph of best and average fitness – generations:

 So, we can see that our algorism has chosen

the first half of items.

 Algorism is correct.

