

 2016

Knapsack Problem

10.27

KIRILL TSIBIKOV

My parameters:

 A (size of knapsack) = 10000

 limit of n = 350

Random generated w_i and x_i:

Tables with 5 best chromosomes:

1 Iteration

100 Iteration

Volume 1 2 3 3 9 6 10 5 7 2 6 1 1 6 4 1 1 9 6 6

Price 9 4 10 7 7 10 1 7 7 3 1 7 5 6 4 3 8 10 9 9

0

5000

10000

15000

20000

25000

30000

1
1

5
2

9
4

3
5

7
7

1
8

5
9

9
1

1
3

1
2

7
1

4
1

1
5

5
1

6
9

1
8

3
1

9
7

2
1

1
2

2
5

2
3

9
2

5
3

2
6

7
2

8
1

2
9

5
3

0
9

3
2

3
3

3
7

3
5

1
3

6
5

3
7

9
3

9
3

4
0

7
4

2
1

4
3

5
4

4
9

4
6

3
4

7
7

4
9

1

Fi
tn

es

Iteration

Graphic: iteration from fitnes

Best Fitnes Average Fitnes

200 Iteration

300 Iteration

500 Iteration

Source Code

package brestterespol;

import java.util.Random;

class GeneticAlgo {

 public enum SelectionType {

 TOURNEY, ROULETTE_WHEEL, TRUNCATING

 }

 public enum CrossingType {

 UNIFORM, TWO_POINT_RECOMBINATION, ELEMENTWISE_RECOMBINATION, ONE_ELEMENT_EXCHANGE

 }

 private SelectionType slctp;//Тип Селекции

 private CrossingType crstp;//Тип Скрещивания

 private static int genomLength = 20; //Длина хромосомы

 private static int generationCount = 10000000; //Кол-во поколений

 private static int individualCount = 40; //Кол-во Геномов(Индивидов,Особей) в поколении

 private static int limitVolumes = 10000; //ограничение по общему объему продуктов

 private static int limitPrice = 10; //ограничение по цене продукта

 private static int limitVolume = 10; //ограничение по объему, 1 продукта

 private int limitCount = 350; //лимит по количству

 private int[][] population; //поплуция. где каждый бит в особи = количество данного продукта

 int[] price;

 int[] volume;

 int[] sortFitnes;

 public GeneticAlgo(String s, String c) {

 slctp = SelectionType.valueOf(s);

 crstp = CrossingType.valueOf(c);

 population = new int[individualCount + 1][genomLength];

 volume = new int[genomLength];

 price = new int[genomLength];

 sortFitnes = new int[individualCount];

 }

 public void run() {

 this.generateFirstGeneration();

 for (int i = 0; i < generationCount; i++) {

 this.selection();

 }

 }

 private void generateFirstGeneration() {

 Random rnd = new Random();

 for (int j = 0; j < genomLength; j++) {

 volume[j] = Math.abs(rnd.nextInt()) % limitVolume + 1;

 price[j] = Math.abs(rnd.nextInt()) % limitPrice + 1;

 }

 for (int i = 0; i < individualCount; i++) {

 do {

 for (int j = 0; j < genomLength; j++) {

 population[i][j] = Math.abs(rnd.nextInt()) % limitCount;

 }

 } while (!getLimit(i));

 }

 } //генерация первого поколения

 private void selection() {

 int[][] genomListOffsprings = new int[individualCount][genomLength];

 Random rndd = new Random();

 switch (this.slctp) {

 case TRUNCATING: {

 this.sort();

 this.print();

 for (int i = 0; i < GeneticAlgo.individualCount; i++) {

 do {

 genomListOffsprings[i] = this.crossing((Math.abs(rndd.nextInt())) %

individualCount / 2, (Math.abs(rndd.nextInt())) % individualCount / 2);

 population[individualCount] = genomListOffsprings[i];

 } while (!getLimit(individualCount));

 }

 System.arraycopy(genomListOffsprings, 0, population, 0,

GeneticAlgo.individualCount);

 break;

 }

 default:

 break;

 }

 } //Процедура селекци

 private void sort() {

 for (int i = 0; i < GeneticAlgo.individualCount; i++) {

 sortFitnes[i] = fitnes(i);

 }

 for (int i = 0; i < GeneticAlgo.individualCount; i++) {

 int[] genom;

 for (int j = i; j < GeneticAlgo.individualCount; j++) {

 if (sortFitnes[i] < sortFitnes[j]) {

 int cur = sortFitnes[i];

 sortFitnes[i] = sortFitnes[j];

 sortFitnes[j] = cur;

 genom = population[i];

 population[i] = population[j];

 population[j] = genom;

 }

 }

 }

 }

 private int fitnes(int nomber) {

 int ftns = 0;

 for (int j = 0; j < genomLength; j++) {

 ftns += price[j] * population[nomber][j];

 }

 return (getLimit(nomber)) ? ftns : 0;

 } //Фитнес функция

 private void print() {

 System.out.print(sortFitnes[0]);

 System.out.print(":");

 System.out.print(avgfitnes());

 System.out.println();

 }

 private int[] crossing(int a, int b) {

 int[] vec = new int[genomLength];

 Random rand = new Random();

 switch (crstp) {

 case UNIFORM: {

 for (int i = 0; i < genomLength; i++) {

 boolean n = rand.nextBoolean();

 vec[i] = (n) ? population[b][i] : population[a][i];

 }

 break;

 }

 default:

 break;

 }

 //мутация

 for (int i = 0; i < genomLength; i++) {

 int t = Math.abs(rand.nextInt()) % limitCount;

 vec[i] = ((Math.abs(rand.nextInt()) % 20) == 0) ? (vec[i] == t) ? (t + 1) % limitCount

: t : vec[i];

 }

 return vec;

 } //Процедура скрещивания

 private boolean getLimit(int n) {

 int sum = 0;

 for (int i = 0; i < genomLength; i++) {

 sum += population[n][i] * volume[i];

 }

 return (sum < limitVolumes);

 }

 private int getVolume(int i) {

 int sum = 0;

 for (int j = 0; j < genomLength; j++) {

 sum += population[i][j] * volume[j];

 }

 return sum;

 }

 private int avgfitnes() {

 int sum = 0;

 for (int i = 0; i < individualCount; i++) {

 sum += sortFitnes[i];

 }

 return sum / individualCount;

 }

}

public class BrestTerespol {

 public static void main(String[] args) {

 GeneticAlgo p = new GeneticAlgo("TRUNCATING", "UNIFORM");

 p.run();

 }

}

