Knapsack Problem
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My parameters:

A (size of knapsack) = 10000

limit of n = 350

Random generated w_i and x_i:

Volume 12 339 6105726116411 966
94107710 177317564381099
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Graphic: iteration from fitnes

Tables with 5 best chromosomes:

1 Iteration

Best Fiwve chromosome
238 21 78 155 3z
275 Z4 43 250 10s
232 11 2¢ 341 7 2
3z4 74 20z 201 35
347 Z%& 331 141 &%
100 Iteration

Best Fiwve chromosome
342 3483 341 321z 10
342 345 341 321z 10
342 345 341 321z 10
342 345 341 321z 10
342 345 341 321z 10
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Iteration
Best Fitnes Average Fitnes
298 51 &0 44 331 21% 4& 230 12% 132 &5 2z 113
17 104 201 34 2B1 & 95 &4 35 208 & Z3% 91
7T 112 33z 48 24e 5% 23 &1 15 284 22 50 &3
229 13%0 1Bz 14 151 12& 1& 22 91 73 10& 275 &
101 2 35 &8 97 145 36 11 &4 &0 118 33 Z30
101 3 1%% 3 3245 345 & 52 320 312z 21 125 247
101 3 1%% 3 3245 345 & 52 320 312z 21 125 247
101 3 283 3 321e 345 & 52 320 312 21 125 247
94 3 310 3 31le 345 & 75 30 313z 17 14T 247
94 3 283 3 31t 345 & B2 3Z0 313 21 125 247
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Iteration

Besat Fiwve chromosome

24z
24z
24z
24z
24z

300

Best
24z
24z
24z
24z
24z

500

Best
24z
24z
24z
24z
24z

345 347 31z 1o 282 1% 101 =3 13% 3 345 345 13 55 320 348 21 125 247
345 347 31z 10 282 1% 101 3 1%% 3 345 345 13 55 320 34% 125 247
345 347 31z 1o 282 1% 101 =3 13% 3 345 345 13 55 320 348 21 125 247
345 347 31z 1o 282 1% 101 =3 13% 3 345 345 13 55 320 348 21 125 247
345 347 31z 1o 282 1% 101 =3 13% 3 345 345 13 55 320 348 21 125 247
Iteration

Five chromosoms

245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
Iteration

Fiwve chromosome

345 3247 31z 10 B2 2 101 =3 158 1z =24% 3245 28 &1 317 3248 21 125 247
345 3247 31z 10 B2 2 101 17 1388 = 324% 3245 13 &1 317 3248 21 125 247
345 3247 31z 12 ZB2 2 101 =3 158 1z =24% 3245 20 &1 317 348 21 125 247
345 3247 31z 12 B2 2 101 =3 158 3 343 3245 Z0 &1 317 34 Z1 125 247

345 3247 31z 12 B2 2 101 =3 158 3 343 3245 Z0 &1 317 34 Z1 125 247

Source Code

package brestterespol;

import java.util.Random;

class GeneticAlgo {

public enum SelectionType {
TOURNEY, ROULETTE WHEEL, TRUNCATING

public enum CrossingType {
UNIFORM, TWO POINT RECOMBINATION, ELEMENTWISE RECOMBINATION, ONE ELEMENT EXCHANGE
}
private SelectionType slctp;//Tun Cejexuun
private CrossingType crstp;//Tun CxpemrBaHMUS
private static int genomLength = 20; //IauHa XpPOMOCOMEI
private static int generationCount = 10000000; //Kos-BO MNOKOJIEHWMI

private static int individualCount = 40; //Kon-Bo TI'eHoMOB (MHOMBMIOB, OcoBeli) B [IOKOJIEHUM

private static int limitVolumes = 10000; //orpaHmueHue no obuemMy OOBEMY IPOIYKTOB

private static int limitPrice = 10; //orpaHuueHMe MO lleHe NPOIOYKTa
private static int limitVolume = 10; //orpaHuuenue o obweMy, 1 HOPOOYKTa
private int limitCount = 350; //AMMMUT 1O KOJMYUCTBY

private int[][] population; //momnyuwsa. T'Oe Kaxneii OMT B O0COBM = KOJMUECTBO MOAHHOTO MIPOIYyKTa

int[] price;
int[] volume;
int[] sortFitnes;

public GeneticAlgo(String s, String c) {
slctp = SelectionType.valueOf (s);
crstp = CrossingType.valueOf (c);
population = new int[individualCount + 1] [genomLength];
volume = new int[genomLength];



price = new int[genomLength];

sortFitnes = new int[individualCount];

}

public void run() {
this.generateFirstGeneration() ;
for (int 1 = 0; i < generationCount; i++) {

this.selection();

private void generateFirstGeneration() {

Random rnd = new Random() ;

for (int j = 0; j < genomLength; j++) {
volume[j] = Math.abs(rnd.nextInt()) % limitVolume + 1;
price[j] = Math.abs(rnd.nextInt()) % limitPrice + 1;

}

for (int i = 0; 1 < individualCount; i++) {
do {

for (int j = 0; j < genomLength; j++) {

)

population[i] [j] = Math.abs(rnd.nextInt()) % limitCount;

}
} while (!getLimit(i));
}

} //TeHepauusa NepBOTO MNOKOJIEHUSA

private void selection() {

int[][] genomListOffsprings = new int[individualCount] [genomLength];

Random rndd = new Random() ;
switch (this.slctp) {
case TRUNCATING: {
this.sort () ;
this.print();
for (int i =

do |
genomListOffsprings[i] = this.crossing((Math.abs (rndd.nextInt()))
individualCount / 2, (Math.abs(rndd.nextInt())) % individualCount / 2);
population[individualCount] = genomListOffsprings([i];
} while (!getLimit (individualCount)) ;

}

System.arraycopy (genomListOffsprings, 0, population,

GeneticAlgo.individualCount) ;
break;
}
default:
break;
}
} //lpouenypa cesexuu

private void sort ()
for (int i = 0
S

{
i1 < GeneticAlgo.individualCount; i++) {
sortFitne ]

[1] = fitnes(i);
}

for (int 1 = 0; i < GeneticAlgo.individualCount; i++) {
int[] genom;

for (int j = i; j < GeneticAlgo.individualCount; Jj++)
if (sortFitnes[i] < sortFitnes([j]) {
int cur = sortFitnes[i];
sortFitnes[i] = sortFitnes[j];
sortFitnes[]j] = cur;

genom = population[i];
population[i] = population[j];
population[j] = genom;

0; i < GeneticAlgo.individualCount; i++)

{



private int fitnes (int nomber) {
int ftns = 0;
for (int j = 0; j < genomLength; j++) {
ftns += price[j] * population[nomber][j];
}
return (getlLimit (nomber)) ? ftns : 0;
} //®uTHEec byHKLUSA

private void print () {
System.out.print (sortFitnes[0]);
System.out.print (":");
System.out.print (avgfitnes());
System.out.println();

private int[] crossing(int a, int b) {
int[] vec = new int[genomLength];
Random rand = new Random() ;
switch (crstp) {
case UNIFORM: {
for (int 1 = 0; i < genomLength; i++) {
boolean n = rand.nextBoolean();
vec[i] = (n) ? population([b][i] : population[a][i];
}
break;
}
default:
break;
}
//MyTaums
for (int 1 = 0; i < genomLength; i++) {
int t = Math.abs(rand.nextInt()) % limitCount;
vec[i] = ((Math.abs(rand.nextInt()) % 20) == 0) ? (vec[i] == t) ? (t + 1) % limitCount
t : vec[i];
}
return vec;
} //lpouenypa CKpellMBaHUA

private boolean getLimit (int n) {
int sum = 0;
for (int 1 = 0; i < genomLength; i++) {
sum += population[n][i] * volume[i];
}

return (sum < limitVolumes) ;

private int getVolume (int 1) {
int sum = 0;
for (int j = 0; j < genomLength; j++) {
sum += population[i][j] * volume[]];
}

return sum;

private int avgfitnes () {
int sum = 0;
for (int i = 0; i < individualCount; i++) {

sum += sortFitnes[i];

}

return sum / individualCount;

public class BrestTerespol {



public static void main(String[] args) {
GeneticAlgo p = new GeneticAlgo ("TRUNCATING", "UNIFORM");
p.run();



