Knapsack Problem

10.27
KIRILL TSIBIKOV



My parameters:

A (size of knapsack) = 10000

limit of n = 350

Random generated w_i and x_i:

Volume 12 339 6105726116411 966
94107710 177317564381099

Price

30000
25000

20000

itnes

15000

F

10000

5000

15
29
43

57
71

85

Graphic: iteration from fitnes

Tables with 5 best chromosomes:

1 Iteration

Best Fiwve chromosome
238 21 78 155 3z
275 Z4 43 250 10s
232 11 2¢ 341 7 2
3z4 74 20z 201 35
347 Z%& 331 141 &%
100 Iteration

Best Fiwve chromosome
342 3483 341 321z 10
342 345 341 321z 10
342 345 341 321z 10
342 345 341 321z 10
342 345 341 321z 10

o
kI gy i R

om

15}

(eI R S R ¥ ]

Lt I I
LI L I I

o

[y
[

ka2

(=R |

[
(=41

=1 =1

[
]
]

({3}
k)

13
13
13
13
13

SN RER iR RS8R g9593859
Iteration
Best Fitnes Average Fitnes
298 51 &0 44 331 21% 4& 230 12% 132 &5 2z 113
17 104 201 34 2B1 & 95 &4 35 208 & Z3% 91
7T 112 33z 48 24e 5% 23 &1 15 284 22 50 &3
229 13%0 1Bz 14 151 12& 1& 22 91 73 10& 275 &
101 2 35 &8 97 145 36 11 &4 &0 118 33 Z30
101 3 1%% 3 3245 345 & 52 320 312z 21 125 247
101 3 1%% 3 3245 345 & 52 320 312z 21 125 247
101 3 283 3 321e 345 & 52 320 312 21 125 247
94 3 310 3 31le 345 & 75 30 313z 17 14T 247
94 3 283 3 31t 345 & B2 3Z0 313 21 125 247



200

Iteration

Besat Fiwve chromosome

24z
24z
24z
24z
24z

300

Best
24z
24z
24z
24z
24z

500

Best
24z
24z
24z
24z
24z

345 347 31z 1o 282 1% 101 =3 13% 3 345 345 13 55 320 348 21 125 247
345 347 31z 10 282 1% 101 3 1%% 3 345 345 13 55 320 34% 125 247
345 347 31z 1o 282 1% 101 =3 13% 3 345 345 13 55 320 348 21 125 247
345 347 31z 1o 282 1% 101 =3 13% 3 345 345 13 55 320 348 21 125 247
345 347 31z 1o 282 1% 101 =3 13% 3 345 345 13 55 320 348 21 125 247
Iteration

Five chromosoms

245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
245 347 31z 10 2Bz 1% 101 32 13% =2 24& 3245 13 55 320 3248 21 125 247
Iteration

Fiwve chromosome

345 3247 31z 10 B2 2 101 =3 158 1z =24% 3245 28 &1 317 3248 21 125 247
345 3247 31z 10 B2 2 101 17 1388 = 324% 3245 13 &1 317 3248 21 125 247
345 3247 31z 12 ZB2 2 101 =3 158 1z =24% 3245 20 &1 317 348 21 125 247
345 3247 31z 12 B2 2 101 =3 158 3 343 3245 Z0 &1 317 34 Z1 125 247

345 3247 31z 12 B2 2 101 =3 158 3 343 3245 Z0 &1 317 34 Z1 125 247

Source Code

package brestterespol;

import java.util.Random;

class GeneticAlgo {

public enum SelectionType {
TOURNEY, ROULETTE WHEEL, TRUNCATING

public enum CrossingType {
UNIFORM, TWO POINT RECOMBINATION, ELEMENTWISE RECOMBINATION, ONE ELEMENT EXCHANGE
}
private SelectionType slctp;//Tun Cejexuun
private CrossingType crstp;//Tun CxpemrBaHMUS
private static int genomLength = 20; //IauHa XpPOMOCOMEI
private static int generationCount = 10000000; //Kos-BO MNOKOJIEHWMI

private static int individualCount = 40; //Kon-Bo TI'eHoMOB (MHOMBMIOB, OcoBeli) B [IOKOJIEHUM

private static int limitVolumes = 10000; //orpaHmueHue no obuemMy OOBEMY IPOIYKTOB

private static int limitPrice = 10; //orpaHuueHMe MO lleHe NPOIOYKTa
private static int limitVolume = 10; //orpaHuuenue o obweMy, 1 HOPOOYKTa
private int limitCount = 350; //AMMMUT 1O KOJMYUCTBY

private int[][] population; //momnyuwsa. T'Oe Kaxneii OMT B O0COBM = KOJMUECTBO MOAHHOTO MIPOIYyKTa

int[] price;
int[] volume;
int[] sortFitnes;

public GeneticAlgo(String s, String c) {
slctp = SelectionType.valueOf (s);
crstp = CrossingType.valueOf (c);
population = new int[individualCount + 1] [genomLength];
volume = new int[genomLength];



price = new int[genomLength];

sortFitnes = new int[individualCount];

}

public void run() {
this.generateFirstGeneration() ;
for (int 1 = 0; i < generationCount; i++) {

this.selection();

private void generateFirstGeneration() {

Random rnd = new Random() ;

for (int j = 0; j < genomLength; j++) {
volume[j] = Math.abs(rnd.nextInt()) % limitVolume + 1;
price[j] = Math.abs(rnd.nextInt()) % limitPrice + 1;

}

for (int i = 0; 1 < individualCount; i++) {
do {

for (int j = 0; j < genomLength; j++) {

)

population[i] [j] = Math.abs(rnd.nextInt()) % limitCount;

}
} while (!getLimit(i));
}

} //TeHepauusa NepBOTO MNOKOJIEHUSA

private void selection() {

int[][] genomListOffsprings = new int[individualCount] [genomLength];

Random rndd = new Random() ;
switch (this.slctp) {
case TRUNCATING: {
this.sort () ;
this.print();
for (int i =

do |
genomListOffsprings[i] = this.crossing((Math.abs (rndd.nextInt()))
individualCount / 2, (Math.abs(rndd.nextInt())) % individualCount / 2);
population[individualCount] = genomListOffsprings([i];
} while (!getLimit (individualCount)) ;

}

System.arraycopy (genomListOffsprings, 0, population,

GeneticAlgo.individualCount) ;
break;
}
default:
break;
}
} //lpouenypa cesexuu

private void sort ()
for (int i = 0
S

{
i1 < GeneticAlgo.individualCount; i++) {
sortFitne ]

[1] = fitnes(i);
}

for (int 1 = 0; i < GeneticAlgo.individualCount; i++) {
int[] genom;

for (int j = i; j < GeneticAlgo.individualCount; Jj++)
if (sortFitnes[i] < sortFitnes([j]) {
int cur = sortFitnes[i];
sortFitnes[i] = sortFitnes[j];
sortFitnes[]j] = cur;

genom = population[i];
population[i] = population[j];
population[j] = genom;

0; i < GeneticAlgo.individualCount; i++)

{



private int fitnes (int nomber) {
int ftns = 0;
for (int j = 0; j < genomLength; j++) {
ftns += price[j] * population[nomber][j];
}
return (getlLimit (nomber)) ? ftns : 0;
} //®uTHEec byHKLUSA

private void print () {
System.out.print (sortFitnes[0]);
System.out.print (":");
System.out.print (avgfitnes());
System.out.println();

private int[] crossing(int a, int b) {
int[] vec = new int[genomLength];
Random rand = new Random() ;
switch (crstp) {
case UNIFORM: {
for (int 1 = 0; i < genomLength; i++) {
boolean n = rand.nextBoolean();
vec[i] = (n) ? population([b][i] : population[a][i];
}
break;
}
default:
break;
}
//MyTaums
for (int 1 = 0; i < genomLength; i++) {
int t = Math.abs(rand.nextInt()) % limitCount;
vec[i] = ((Math.abs(rand.nextInt()) % 20) == 0) ? (vec[i] == t) ? (t + 1) % limitCount
t : vec[i];
}
return vec;
} //lpouenypa CKpellMBaHUA

private boolean getLimit (int n) {
int sum = 0;
for (int 1 = 0; i < genomLength; i++) {
sum += population[n][i] * volume[i];
}

return (sum < limitVolumes) ;

private int getVolume (int 1) {
int sum = 0;
for (int j = 0; j < genomLength; j++) {
sum += population[i][j] * volume[]];
}

return sum;

private int avgfitnes () {
int sum = 0;
for (int i = 0; i < individualCount; i++) {

sum += sortFitnes[i];

}

return sum / individualCount;

public class BrestTerespol {



public static void main(String[] args) {
GeneticAlgo p = new GeneticAlgo ("TRUNCATING", "UNIFORM");
p.run();



