
4 – Abramchuk Andrew

Description of action’s program :
1) Set 30 random points on 10-d space;
2) Calculate distance matrix of 10-d space;
3) Set 30 random points on 2-d space;
4) Calculate distance matrix of 2-d space;
5) Matrix 10-d minus matrix 2-d;
6) Calculate fitness by summing values from matrix (5);
7) Repeat 3-6 100 times (1-st random generation);
8) Sorting (less – better);
9) … Tommorow

Code:

class Program

 {

 static void Main(string[] args)

 {

 Dimension obj = new Dimension();

 obj.GenerateMatrix();

 for (int i = 0; i < obj.numberOfPoints; i++)

 {

 for (int j = 0; j < obj.numberOfPoints; j++)

 Console.Write("{0} ", obj._10DMatrixDistances[i, j]);

 Console.Write("\n");

 }

 }

 }

class Dimension

 {

 public double[,] _10DMatrix;

 public double[,] _10DMatrixDistances;

 public double[,] _2DMatrix;

 public double[,] _2DMatrixDistances;

 public List<double[,]> List_2DMatrix;

 public double[,] fittnessMatrix;

 public List<double> GenerationFittnessList;

 public List<double> MinGenerationFittness;

 public List<double> AvgGenerationFittness;

 const int _10D = 10;

 const int _2D = 2;

 public readonly int numberOfPoints = 30;

 const int ChromosomesNumber = 100;

 #region initialization and finding distance matrix

 public void GenerateMatrix()

 {

 Random rnd = new Random();

 _10DMatrix = new double[numberOfPoints, _10D];

 for(int i = 0; i < numberOfPoints; i++)

 for(int j = 0; j < _10D; j++)

 _10DMatrix[i, j] = rnd.Next(0, 2001);

 _10DMatrix = NormalizeRandom(_10DMatrix, _10D);

 _10DMatrixDistances = new double[numberOfPoints, numberOfPoints];

 for (int i = 0; i < numberOfPoints; i++)

 for (int j = 0; j < numberOfPoints; j++)

 _10DMatrixDistances[i, j] = FindDistanceND(i, j, _10D,

_10DMatrix);

 _10DMatrixDistances = NormalizeDistance(_10DMatrixDistances);

 GenerationFittnessList = new List<double>();

 List_2DMatrix = new List<double[,]>();

 int iter = 0;

 while (iter < 100)

 {

 Generate2DMatrix();

 FindFitness();

 List_2DMatrix.Add(_2DMatrix);

 iter++;

 }

 MinGenerationFittness = new List<double>();

 AvgGenerationFittness = new List<double>();

 MinGenerationFittness.Add(GenerationFittnessList.Min());

 AvgGenerationFittness.Add(GenerationFittnessList.Average());

 }

 void Generate2DMatrix()

 {

 Random rnd = new Random();

 _2DMatrix = new double[numberOfPoints, _2D];

 for (int i = 0; i < numberOfPoints; i++)

 for (int j = 0; j < _2D; j++)

 _2DMatrix[i, j] = rnd.Next(0, 2001);

 _2DMatrix = NormalizeRandom(_2DMatrix, _2D);

 _2DMatrixDistances = new double[numberOfPoints, numberOfPoints];

 for (int i = 0; i < numberOfPoints; i++)

 for (int j = 0; j < numberOfPoints; j++)

 _2DMatrixDistances[i, j] = FindDistanceND(i, j, _2D,

_2DMatrix);

 _2DMatrixDistances = NormalizeDistance(_2DMatrixDistances);

 }

 int FindDistanceND(int i , int j, int size, double[,] _10DMatr)

 {

 if (i == j) return 0;

 int num = 0;

 for (int k = 0; k < size; k++)

 num += (int)Math.Pow(_10DMatr[i, k] - _10DMatr[j, k], 2);

 return (int)Math.Sqrt(num);

 }

 double[,] NormalizeDistance(double[,] mat)

 {

 double max = mat.Cast<double>().Max();

 for(int i = 0; i < numberOfPoints; i++)

 for(int j = 0; j < numberOfPoints; j++)

 mat[i, j] /= max;

 return mat;

 }

 double[,] NormalizeRandom(double[,] mat, int size)

 {

 for(int i = 0; i < numberOfPoints; i++)

 for(int j = 0; j < size; j++)

 {

 mat[i, j] /= 1000;

 if (mat[i, j] == 1) mat[i, j] = 0;

 else if (mat[i, j] < 1) mat[i, j] = -mat[i, j];

 else mat[i, j] -= 1;

 }

 return mat;

 }

 public void FindFitness()

 {

 fittnessMatrix = new double[numberOfPoints, numberOfPoints];

 double fittness = 0;

 for (int i = 0; i < numberOfPoints; i++)

 for (int j = 0; j < numberOfPoints; j++)

 fittnessMatrix[i, j] = _10DMatrixDistances[i, j] -

_2DMatrixDistances[i, j];

 for (int i = 0; i < numberOfPoints; i++)

 for (int j = 0; j < numberOfPoints; j++)

 fittness += fittnessMatrix[i, j];

 GenerationFittnessList.Add(fittness);

 }

 #endregion

 public void MainCicle()

 {

 SortPopulation();

 }

 #region Sorting

 public void SortPopulation()

 {

 int[] keys = new int[ChromosomesNumber];

 for (int i = 0; i < ChromosomesNumber; i++) keys[i] = i;

 Array.Sort(GenerationFittnessList.ToArray(), keys);

 List<double[,]> sorted2DMatrix = new List<double[,]>();

 for (int i = 0; i < ChromosomesNumber; i++)

 sorted2DMatrix.Add(FindKMatrix(keys[i]));

 List_2DMatrix = null;

 List_2DMatrix = sorted2DMatrix;

 }

 public double[,] FindKMatrix(int k)

 {

 for (int i = 0; i < numberOfPoints; i++)

 if (i == k) return List_2DMatrix[i];

 return null;

 }

 #endregion

 public void UniformCrossover()

 {

 }

 public bool Uslovie()

 {

 if (MinGenerationFittness.Last() == 0) return false;

 return true;

 }

 }

