4 — Abramchuk Andrew

Description of action’s program :

1) Set 30 random points on 10-d space;

2) Calculate distance matrix of 10-d space;

3) Set 30 random points on 2-d space;

4) Calculate distance matrix of 2-d space;

5) Matrix 10-d minus matrix 2-d;

6) Calculate fitness by summing values from matrix (5);
7) Repeat 3-6 100 times (1-st random generation);

8) Sorting (less — better);

9) ... Tommorow

Code:

class Program
{
static void Main(string[] args)
{
Dimension obj = new Dimension () ;
obj.GenerateMatrix () ;
for (int i = 0; 1 < obj.numberOfPoints;

{

for (int j = 0; J < obj.numberOfPoints;

Console.Write("{0} ", obj. 10DMatrixDistances[i, J]);

Console.Write ("\n");

class Dimension
{

public double[,] 10DMatrix;
public double[,] 10DMatrixDistances;
public double[,] 2DMatrix;
public double[,] 2DMatrixDistances;
public List<double[,]> List 2DMatrix;
public double[,] fittnessMatrix;
public List<double> GenerationFittnessList;
public List<double> MinGenerationFittness;
public List<double> AvgGenerationFittness;
const int 10D = 10;
const int 2D = 2;
public readonly int numberOfPoints = 30;
const int ChromosomesNumber = 100;

4

#region initialization and finding distance matrix

public void GenerateMatrix()

{

Random rnd = new Random () ;

_10DMatrix = new double[numberOfPoints, 10D];

for(int 1 = 0; 1 < numberOfPoints; 1i++)
for(int j = 0; j < _10D; J++)

_10DMatrix[i, Jj] = rnd.Next (0, 2001);
_10DMatrix = NormalizeRandom(10DMatrix, _10D);
_10DMatrixDistances = new double[numberOfPoints,
for (int i = 0; 1 < numberOfPoints; i++)

for (int j = 0; j < numberOfPoints;

numberOfPoints];

_10DMatrixDistances|[1i,

_10DMatrix) ;
_10DMatrixDistances

GenerationFittnessList

new L

List 2DMatrix
int iter 0;
while (iter < 100)
{

Generate2DMatrix (
FindFitness () ;

FindDistanceND (1, 10D,

j] 3,
NormalizeDistance(10DMatrixDistances);
new List<double> () ;

ist<doublel[,1>();

) ;

List 2DMatrix.Add(2DMatrix);

iter++;
}
MinGenerationFittness
AvgGenerationFittness

MinGenerationFittness.
AvgGenerationFittness.

}

volid Generate2DMatrix ()

{

Random rnd

_2DMatrix
for (int 1 0;
for (int j = 0; 3

_2DMatrix[i,
_2DMatrix
_2DMatrixDistances
for (int i 0;
for (int j = 0;

]

_2DMatrixDistances|[i,

_2DMatrix);
_2DMatrixDistances

}

int FindDistanceND (int

if (i == 3)
int num 0
for (int k

num +=
return

return 0;

0;
int)Math.

(

double[,]
{

double max
for(int 1 = 0;
for (int 3
mat [i,

return mat;

j

0;
jl /=

double[,]
{
for(int 1 = 0;
for (int J
{

0;

j

/=
]

mat [i, 7]
if (mat[i,
else if
else mat[i,
}
return mat;

}

public void FindFitness /()

i < numberOfPoints;

k < size;

NormalizeDistance (doublel,]

NormalizeRandom (double[,]

1 < numberOfPoints;

(mat[1i,
jl

new List<double> () ;

= new List<double>():;

Add (GenerationFittnessList.Min());

Add (GenerationFittnessList.Average());

new Random () ;
new double[numberOfPoints,
i < numberOfPoints;

2D];
it+)

< _2D; J++)
3] rnd.Next (0,

2001) ;

NormalizeRandom(2DMatrix, 2D);

new double[numberOfPoints, numberOfPoints];

i++)
< numberOfPoints; j++)
3] FindDistanceND (i,

= I, _2Dr

NormalizeDistance (2DMatrixDistances) ;

int j, int size, double[,] 10DMatr)

4

k++)

Pow(10DMatr[i, k] - 10DMatr([j, k], 2);

(int)Math.Sqgrt (num) ;

mat)

mat.Cast<double> () .Max () ;
i < numberOfPoints;

i++)
< numberOfPoints;
max;

j44)

mat, int size)
i++)

< size; J++)
1000;
== 1)
il

mat[i,
< 1)
1;

J1
mat[i,

fittnessMatrix = new double[numberOfPoints, numberOfPoints];
double fittness = 0;
for (int i = 0; 1 < numberOfPoints; i++)
for (int j = 0; J < numberOfPoints; Jj++)
fittnessMatrix[i, J] = _10DMatrixDistances[i, J] -
_2DMatrixDistances[i, Jj1;
for (int i = 0; 1 < numberOfPoints; i++)
for (int j = 0; j < numberOfPoints; j++)
fittness += fittnessMatrix([i, JjI;
GenerationFittnessList.Add (fittness);

}

#endregion

public void MainCicle ()
{ SortPopulation();

}

#region Sorting

public void SortPopulation()
{

int[] keys = new int[ChromosomesNumber];

for (int i = 0; 1 < ChromosomesNumber; i++) keys[i] = 1i;
Array.Sort (GenerationFittnessList.ToArray (), keys);
List<double([,]> sorted2DMatrix = new List<doublel[,]>();
for (int i = 0; 1 < ChromosomesNumber; i++)

sorted2DMatrix.Add (FindKMatrix (keys[i]));
List 2DMatrix = null;
List 2DMatrix = sorted2DMatrix;
}

public double[,] FindKMatrix (int k)
{
for (int i = 0; 1 < numberOfPoints; i++)
if (i == k) return List 2DMatrix([i];
return null;

}
#endregion

public void UniformCrossover ()

{

}

public bool Uslovie ()
{

if (MinGenerationFittness.Last() == 0) return false;
return true;

