4 exercise — Igor Kondraashuk
Task
From 10D graphic to 2D graphic.

Source code

Dot.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_kondrashuk

{

class Dots
{
public List<double> listX;
public List<double> listY;
public Dots(List<double> listX, List<double> listY)

{

this.listX listX;
this.listY = 1listY;

}

private void calculateFitness(List<List<double>> distanceTenD)
{
double fitness = 0;
List<List<double>> distanceTwoD = new List<List<double>>();
for(int i=0;i< distanceTwoD.Count;i++)
return fitness;

GA.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading;

using System.Threading.Tasks;

namespace lab3_siit_kondrashuk

{

class GA
{
Random random;
List<Population> historyOfPopulation;
public GA()
{
random = new Random();
List<Dots> dots = new List<Dots>();
for (int i = 0; 1 < 20; i++)
{
List<double> chromosomes = new List<double>();
for (int j = 0; j < 20; j++)
{

}

dots.Add(new Dots(chromosomes));

chromosomes .Add(random.NextDouble() % 2 -1);



//Sorting by fitness
for (int i = @; i < dots.Count; i++)

{
for (int j = dots.Count - 1; j > i; j--)
{
if (dots[j].fitness > dots[j - 1].fitness)
{
Dots tempDot = dots[j];
dots[j] = dots[j - 1];
dots[j - 1] = tempDot;
}
}
}

Population startPopulation = new Population(dots);
historyOfPopulation = new List<Population>();
historyOfPopulation.Add(startPopulation);

int k = 0;
while (!isReady(historyOfPopulation))
{

Thread.Sleep(10);
historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));

k++;
}
}
private Population getNextPupulation(Population parentPopulation)
{

List<Dots> childrenPopulationDots = new List<Dots>();

for (int i = 0; 1 < 10; i++)

{

List<Dots> childrenDots = getChildren(
parentPopulation.dots[random.Next() % 10 + 10],
parentPopulation.dots[random.Next() % 10 + 10]
)s

childrenPopulationDots.AddRange(childrenDots);

}

//Sorting by fitness
for (int i = @; i < childrenPopulationDots.Count; i++)

{
for (int j = childrenPopulationDots.Count - 1; j > i; j--)
{
if (childrenPopulationDots[j].fitness > childrenPopulationDots[j -
1].fitness)
{
Dots tempDot = childrenPopulationDots[]j];
childrenPopulationDots[j] = childrenPopulationDots[j - 1];
childrenPopulationDots[j - 1] = tempDot;
}
}
}

Population childrenPopulation = new Population(childrenPopulationDots);
return childrenPopulation;

}

Boolean isReady(List<Population> historyOfPopulation)

{
if (historyOfPopulation.Count < 100)

return false;
else

{
for (int i = historyOfPopulation.Count - 100; i <
historyOfPopulation.Count; i++)

{
if (historyOfPopulation[historyOfPopulation.Count -
100].avarageFitness != historyOfPopulation[i].avarageFitness)



return false;
}
return true;
}
}
private List<Dots> getChildren(Dots father, Dots mother)
{
List<Dots> childrenDots = new List<Dots>();
int pointCross = random.Next()%20;
List<double> firstChromosomes = new List<double>();
List<double> secondChromosomes = new List<double>();
for (int j = 0; j < 20; j++)
{
if(j<pointCross)

firstChromosomes.Add(father.chromosomes[j]);
secondChromosomes .Add(mother.chromosomes[j]);
}
else
{
firstChromosomes.Add(mother.chromosomes[j]);
secondChromosomes .Add(father.chromosomes[j]);

}

//Mutation
for (int j = ©; j < childrenDots.Count; j++)
{
int prob = random.Next(@, 20);
if (prob == 7)
{
int number = random.Next(20);
childrenDots[j].chromosomes[number] = random.NextDouble() % 2 - 1;

}

childrenDots.Add(new Dots(firstChromosomes));
childrenDots.Add(new Dots(secondChromosomes));
return childrenDots;

Population.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace lab3_siit_kondrashuk
{
class Population
{
public List<Dots> dots;
public double theBestFitness;
public double avarageFitness;
public Population(List<Dots> dogs)

{
this.dots = dogs;
theBestFitness = getTheBestFitness(dogs);
avarageFitness = getAvarageFitness(dogs);
}

public double getTheBestFitness(List<Dots> dogs)
{



}

double bestFitness = 9999;
for (int i = @; i < dogs.Count; i++)
if (bestFitness > dogs[i].fitness)
bestFitness = dogs[i].fitness;
return bestFitness;

public double getAvarageFitness(List<Dots> dogs)

{

double avarageFitness = 0;

for (int i = @; i < dogs.Count; i++)
avarageFitness += dogs[i].fitness;

avarageFitness /= dogs.Count;

return avarageFitness;



