
4 exercise – Igor Kondraashuk

Task

From 10D graphic to 2D graphic.

 Source code

Dot.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace lab3_siit_kondrashuk
{
 class Dots
 {
 public List<double> listX;
 public List<double> listY;
 public Dots(List<double> listX, List<double> listY)
 {
 this.listX = listX;
 this.listY = listY;
 }
 private void calculateFitness(List<List<double>> distanceTenD)
 {
 double fitness = 0;
 List<List<double>> distanceTwoD = new List<List<double>>();
 for(int i=0;i< distanceTwoD.Count;i++)
 return fitness;
 }
 }
}

GA.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading;
using System.Threading.Tasks;

namespace lab3_siit_kondrashuk
{
 class GA
 {
 Random random;
 List<Population> historyOfPopulation;
 public GA()
 {
 random = new Random();
 List<Dots> dots = new List<Dots>();
 for (int i = 0; i < 20; i++)
 {
 List<double> chromosomes = new List<double>();
 for (int j = 0; j < 20; j++)
 {
 chromosomes.Add(random.NextDouble() % 2 -1);
 }
 dots.Add(new Dots(chromosomes));
 }

 //Sorting by fitness
 for (int i = 0; i < dots.Count; i++)
 {
 for (int j = dots.Count - 1; j > i; j--)
 {
 if (dots[j].fitness > dots[j - 1].fitness)
 {
 Dots tempDot = dots[j];
 dots[j] = dots[j - 1];
 dots[j - 1] = tempDot;
 }
 }
 }
 Population startPopulation = new Population(dots);
 historyOfPopulation = new List<Population>();
 historyOfPopulation.Add(startPopulation);
 int k = 0;
 while (!isReady(historyOfPopulation))
 {
 Thread.Sleep(10);
 historyOfPopulation.Add(getNextPupulation(historyOfPopulation[k]));
 k++;
 }
 }
 private Population getNextPupulation(Population parentPopulation)
 {
 List<Dots> childrenPopulationDots = new List<Dots>();

 for (int i = 0; i < 10; i++)
 {
 List<Dots> childrenDots = getChildren(
 parentPopulation.dots[random.Next() % 10 + 10],
 parentPopulation.dots[random.Next() % 10 + 10]
);
 childrenPopulationDots.AddRange(childrenDots);
 }
 //Sorting by fitness
 for (int i = 0; i < childrenPopulationDots.Count; i++)
 {
 for (int j = childrenPopulationDots.Count - 1; j > i; j--)
 {
 if (childrenPopulationDots[j].fitness > childrenPopulationDots[j -
1].fitness)
 {
 Dots tempDot = childrenPopulationDots[j];
 childrenPopulationDots[j] = childrenPopulationDots[j - 1];
 childrenPopulationDots[j - 1] = tempDot;
 }
 }
 }
 Population childrenPopulation = new Population(childrenPopulationDots);
 return childrenPopulation;
 }

 Boolean isReady(List<Population> historyOfPopulation)
 {
 if (historyOfPopulation.Count < 100)
 return false;
 else
 {
 for (int i = historyOfPopulation.Count - 100; i <
historyOfPopulation.Count; i++)
 {
 if (historyOfPopulation[historyOfPopulation.Count -
100].avarageFitness != historyOfPopulation[i].avarageFitness)

 return false;
 }
 return true;
 }
 }
 private List<Dots> getChildren(Dots father, Dots mother)
 {
 List<Dots> childrenDots = new List<Dots>();
 int pointCross = random.Next()%20;
 List<double> firstChromosomes = new List<double>();
 List<double> secondChromosomes = new List<double>();
 for (int j = 0; j < 20; j++)
 {
 if(j<pointCross)
 {
 firstChromosomes.Add(father.chromosomes[j]);
 secondChromosomes.Add(mother.chromosomes[j]);
 }
 else
 {
 firstChromosomes.Add(mother.chromosomes[j]);
 secondChromosomes.Add(father.chromosomes[j]);
 }
 }

 //Mutation
 for (int j = 0; j < childrenDots.Count; j++)
 {
 int prob = random.Next(0, 20);
 if (prob == 7)
 {
 int number = random.Next(20);
 childrenDots[j].chromosomes[number] = random.NextDouble() % 2 - 1;
 }
 }

 childrenDots.Add(new Dots(firstChromosomes));
 childrenDots.Add(new Dots(secondChromosomes));
 return childrenDots;
 }
 }
}

Population.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace lab3_siit_kondrashuk
{
 class Population
 {
 public List<Dots> dots;
 public double theBestFitness;
 public double avarageFitness;
 public Population(List<Dots> dogs)
 {
 this.dots = dogs;
 theBestFitness = getTheBestFitness(dogs);
 avarageFitness = getAvarageFitness(dogs);
 }
 public double getTheBestFitness(List<Dots> dogs)
 {

 double bestFitness = 9999;
 for (int i = 0; i < dogs.Count; i++)
 if (bestFitness > dogs[i].fitness)
 bestFitness = dogs[i].fitness;
 return bestFitness;
 }
 public double getAvarageFitness(List<Dots> dogs)
 {
 double avarageFitness = 0;
 for (int i = 0; i < dogs.Count; i++)
 avarageFitness += dogs[i].fitness;
 avarageFitness /= dogs.Count;
 return avarageFitness;
 }
 }
}

