package com.badmanners;

import java.util.Arrays;
import java.util.Random;

public class Main
{
static Random rnd = new Random{() ;
static class Point2D
{
double x, y;
public Point2D ()
{

x = rnd.nextDouble() * 2 - 1;
y = rnd.nextDouble() * 2 - 1;
}
}
static class Pointl0D
{
double x[] = new double[10];

public Pointl10D ()
{
for(int i = 0; i < x.length; i++)
x[1] = rnd.nextDouble() * 2 - 1;
}
}
static class Matrix
{
double[] [] matrix = new double[30] [30];
public Matrix () {}
public Matrix (Pointl0OD[] points30D)
{
double max = 0;
for(int i = 0
for (int j

{

i < 30; i++)
0; j < 30; j++)

|~

matrix[i] [j] = calculateDistancell(points30D[1i],
points30D[]]);
if (matrix([i] [J] > max)
max = matrix([i] []J];
}
for(int i = 0
for (int j
matrix[i]

i < 30; i++)
0; J < 30; j++)
[3] /= max;

I~

}
public Matrix (Point2D[] points2D)
{
double max = 0;
for(int i = 0
for (int j

{

i < 30; i++)
0; j < 30; j++)

|~

matrix[i] [j] = calculateDistanceZ(points2D[i], points2D[]j]);
if (matrix([i][]j] > max)
max = matrix([i][]J];
}
for(int i = 0
for (int j
matrix[i]

i < 30; i++)
0; § < 30; j++)
[§]1 /= max;

I~

}
double getFitness()

{
double cnt = 0;
for(int i = 0

for (int j

i < 30; i++)
0; j < 30; j++)

|~

cnt += matrix[i][j];
return cnt;
}
}
static class Chromosome
{
double fitness;
Point2D[] points2D = new Point2D[30];
public Chromosome ()
{
for(int i = 0; i < 30; i++)
points2D[i] = new Point2D();
}
double calculateFitness (Matrix distance30)
{
Matrix distance2 = new Matrix (points2D) ;

fitness = calculateDifference(distance30, distance?2)
return fitness;

.getFitness();
}
}
static class Generation
{
Chromosome [] chromosomes = new Chromosome[100];
public Generation ()
{
for(int i = 0; i < 100; i++)
chromosomes[i] = new Chromosome () ;
}
double calculateFitness (Matrix distance30)
{
for(int i = 0; i < 100; i++)
chromosomes[i] .calculateFitness (distance30);
Arrays.sort (chromosomes, (ol, o02) ->
{
if (ol.fitness > o2.fitness)
return 1;
else if(ol.fitness < o2.fitness)
return -1;
else
return 0O;
1)
return chromosomes[0].fitness;

}

static double calculateDistancelO (Pointl0OD first, Pointl0D second)
{
double cnt = 0.0;
for(int 1 = 0; 1 < 10; i++)
cnt += (first.x[i] - second.x[1]) * (first.x[1i]

- second.x[i]);
return Math.sqgrt(cnt);

}
static double calculateDistance?2 (Point2D first,

Point2D second)
{

return Math.sgrt((first.x - second.x) *
- second.y) * (first.y - second.y)):;

}

static Matrix calculateDifference (Matrix first,

{

(first.x - second.x) + (first.y

Matrix second)

Matrix temp = new Matrix();
for(int i = 0; i < 30; i++)
for(int j = 0; j < 30; j++)

temp.matrix[i] [j] = Math.abs(first.matrix[i][]j] -
second.matrix([i] [j])

return temp;
}
static Chromosome crossover (Chromosome first, Chromosome second)
{

Chromosome chromosome = new Chromosome () ;

for(int i = 0; i1 < chromosome.points2D.length; i++)

if (rnd.nextInt (60) == 0)
chromosome.points2D[i] = new Point2D();
else

chromosome.points2D[1i]
second.points2D[1i];
return chromosome;

rnd.nextInt (2) == 0 ? first.points2D[i]

}
static Generation createNewGeneration (Generation prevGeneration)
{
Generation generation = new Generation();
for(int i = 0; i < generation.chromosomes.length; i++)
generation.chromosomes|[i] =
crossover (prevGeneration.chromosomes [rnd.nextInt (50)],

prevGeneration.chromosomes [rnd.nextInt (50)1]);
return generation;

}

public static void main (String[] args)

{
Pointl0D[] pointl0Ds = new PointlOD[30];
for(int i = 0; i < 30; i++)

pointl0Ds[i] = new PointlO0D();
Matrix distance30 = new Matrix(pointl0Ds) ;
Generation prevGeneration = new Generation(), generation;

prevGeneration.calculateFitness (distance30);

for(int i = 0; ; i++)
{
generation = createNewGeneration(prevGeneration);
double fitness = generation.calculateFitness (distance30);
System.out.println(i + ": " + fitness);
if (fitness <= 0.1)
break;
prevGeneration = generation;

}

System.out.println();

