
package com.badmanners;

import java.util.Arrays;
import java.util.Random;

public class Main
{
 static Random rnd = new Random();
 static class Point2D
 {
 double x, y;
 public Point2D()
 {
 x = rnd.nextDouble() * 2 - 1;
 y = rnd.nextDouble() * 2 - 1;
 }
 }
 static class Point10D
 {
 double x[] = new double[10];
 public Point10D()
 {
 for(int i = 0; i < x.length; i++)
 x[i] = rnd.nextDouble() * 2 - 1;
 }
 }
 static class Matrix
 {
 double[][] matrix = new double[30][30];
 public Matrix() {}
 public Matrix(Point10D[] points30D)
 {
 double max = 0;
 for(int i = 0; i < 30; i++)
 for(int j = 0; j < 30; j++)
 {
 matrix[i][j] = calculateDistance10(points30D[i],
points30D[j]);
 if(matrix[i][j] > max)
 max = matrix[i][j];
 }
 for(int i = 0; i < 30; i++)
 for(int j = 0; j < 30; j++)
 matrix[i][j] /= max;
 }
 public Matrix(Point2D[] points2D)
 {
 double max = 0;
 for(int i = 0; i < 30; i++)
 for(int j = 0; j < 30; j++)
 {
 matrix[i][j] = calculateDistance2(points2D[i], points2D[j]);
 if(matrix[i][j] > max)
 max = matrix[i][j];
 }
 for(int i = 0; i < 30; i++)
 for(int j = 0; j < 30; j++)
 matrix[i][j] /= max;
 }
 double getFitness()
 {
 double cnt = 0;
 for(int i = 0; i < 30; i++)
 for(int j = 0; j < 30; j++)

 cnt += matrix[i][j];
 return cnt;
 }
 }
 static class Chromosome
 {
 double fitness;
 Point2D[] points2D = new Point2D[30];
 public Chromosome()
 {
 for(int i = 0; i < 30; i++)
 points2D[i] = new Point2D();
 }
 double calculateFitness(Matrix distance30)
 {
 Matrix distance2 = new Matrix(points2D);
 fitness = calculateDifference(distance30, distance2).getFitness();
 return fitness;
 }
 }
 static class Generation
 {
 Chromosome[] chromosomes = new Chromosome[100];
 public Generation()
 {
 for(int i = 0; i < 100; i++)
 chromosomes[i] = new Chromosome();
 }
 double calculateFitness(Matrix distance30)
 {
 for(int i = 0; i < 100; i++)
 chromosomes[i].calculateFitness(distance30);
 Arrays.sort(chromosomes, (o1, o2) ->
 {
 if(o1.fitness > o2.fitness)
 return 1;
 else if(o1.fitness < o2.fitness)
 return -1;
 else
 return 0;
 });
 return chromosomes[0].fitness;
 }
 }

 static double calculateDistance10(Point10D first, Point10D second)
 {
 double cnt = 0.0;
 for(int i = 0; i < 10; i++)
 cnt += (first.x[i] - second.x[i]) * (first.x[i] - second.x[i]);
 return Math.sqrt(cnt);
 }
 static double calculateDistance2(Point2D first, Point2D second)
 {
 return Math.sqrt((first.x - second.x) * (first.x - second.x) + (first.y
- second.y) * (first.y - second.y));
 }
 static Matrix calculateDifference(Matrix first, Matrix second)
 {
 Matrix temp = new Matrix();
 for(int i = 0; i < 30; i++)
 for(int j = 0; j < 30; j++)
 temp.matrix[i][j] = Math.abs(first.matrix[i][j] -
second.matrix[i][j]);

 return temp;
 }
 static Chromosome crossover(Chromosome first, Chromosome second)
 {
 Chromosome chromosome = new Chromosome();
 for(int i = 0; i < chromosome.points2D.length; i++)
 if(rnd.nextInt(60) == 0)
 chromosome.points2D[i] = new Point2D();
 else
 chromosome.points2D[i] = rnd.nextInt(2) == 0 ? first.points2D[i]
: second.points2D[i];
 return chromosome;
 }
 static Generation createNewGeneration(Generation prevGeneration)
 {
 Generation generation = new Generation();
 for(int i = 0; i < generation.chromosomes.length; i++)
 generation.chromosomes[i] =
crossover(prevGeneration.chromosomes[rnd.nextInt(50)],

prevGeneration.chromosomes[rnd.nextInt(50)]);
 return generation;
 }

 public static void main(String[] args)
 {
 Point10D[] point10Ds = new Point10D[30];
 for(int i = 0; i < 30; i++)
 point10Ds[i] = new Point10D();
 Matrix distance30 = new Matrix(point10Ds);

 Generation prevGeneration = new Generation(), generation;
 prevGeneration.calculateFitness(distance30);

 for(int i = 0; ; i++)
 {
 generation = createNewGeneration(prevGeneration);
 double fitness = generation.calculateFitness(distance30);
 System.out.println(i + ": " + fitness);
 if(fitness <= 0.1)
 break;
 prevGeneration = generation;
 }

 System.out.println();
 }
}

