4-llya Babich

Demision reduction from 10D hypersphere to 2D cercle

using System;
using System.Collections.Generic;
using System.Ling;

namespace nabas

{

public class Classl

{
Random rnd = new Random();
const int size = 30;
const int sizel = 10;
const int size2 2;
const int size3 100;
int[] keys = new int[size3];
List<double[,]> rd2List = new List<double[,]>();
List<double[,]> array2List = new List<double[,]>();
double[,] rd30 = new double[size, sizel];
double[,] rd2 = new double[size, size2];
double[,] array3@ = new double[size, size];
double[,] array2 = new double[size, size];
List<double[,]> newPopulation = new List<double[,]>();
List<double[,]> p = new List<double[,]>();
List<double[,]> parents = new List<double[,]>();
List<double[,]> DList = new List<double[,]>();
double[,] D = new double[30,30];

List<double> fitnessSum = new List<double>();
public Classi()
{
for (int i = 0; i < size; i++)
{
//10-D
for (int j = @; j < sizel; j++)
{

rd30[i, j] = rnd.Next(@, 2001);
if (rd36[i, j] > 1000)

rd30[i, j] /= 1000;

else
{
rd3e[i, j] = rd3@[i, j] / 100 * -1;
}
}

}
double[] dif = new double[10];

double sum = 9;
double result = 0;
for (int k = 0; k < size; k++)
{
for (int i

{

0; i < size; i++)

for (int j = ©; j < sizel; j++)
{
dif[j]

Math.Pow((rd30[k, j] - rd3@[i, j1), 2);

sum = dif.Sum();
result = Math.Sqrt(sum);
array30[k, i] = result;

for (int 1 = 0; 1 < size3; 1++) {
for (int i = 0; i < size; i++)

{



for (int j = @; j < size2; j++)
{
rd2[i, j] = rnd.Next(@, 2001);
if (rd2[i, j] > 1000)

rd2[i, j] /= 1000;
}

else
rd2[i, j] = rd2[i, j] / 1000 * -1,

}

}
double[] difl = new double[size2];

for (int k = 0; k < size; k++)

{
for (int i = @0; i < size; i++)
{

for (int j = 0; j < size2; j++)
difi[j] = Math.Pow((rd2[k, j] - rd2[i, j]1), 2);

sum = difl.Sum();
result = Math.Sqrt(sum);
array2[k, i] = result;

}

}
double max3@ = array3@.Cast<double>().Max();

double max2 = array2.Cast<double>().Max();
for (int i = @; i < size; i++)

{
for (int j = @; j < size; j++)
{
array30[i, j] = array30[i, j] / max39;
array2[i, j] = array2[i, j] / max2;
}
}

rd2List.Add(rd2);
array2List.Add(array2);

}

Fitness();
Cross();

public void Fitness()

{
for (int i = 0; i < size; i++)
{
for (int j = @; j < size; j++)
{
D[i, j] = array30[i, j] + array2[i, jI;

}
fitnessSum.Add(D.Cast<double>().Sum());

DList.Add(D);
}

public void Cross()

{

for(int i

{
keys[i]

0; 1 < size3; i++)

i;

Array.Sort(fitnessSum.ToArray(), keys);
for (int i = 0; i < size3; i++)
{

newPopulation.Add(array2List[keys[i]]);

}

fitnessSum.Sort();



for (int i = @; i < size3; i++)

{

int a = rnd.Next(@, size3 / 2);
int b = rnd.Next(@, size3 / 2);
p.Add(newPopulation[a]);
p.Add(newPopulation[b]);

int ¢ = rnd.Next(o0, 2);

if (c == 0)
{
parents.Add(p[@]);
}
else
{
parents.Add(p[1]);
}
}
public void Mutation()
{
for (int i = @; i < size3; i++)
{
for (int j = @; j < size; j++)
{

int value = rnd.Next(@, size);
if (value == 0)

double c
parents[i][size,size] = c;

}
fitnessSum.Add(parents.Cast<double>().Sum());
}
}



