import java.util.Arrays;
import java.util.Random;

public class Main
{
static Random rnd = new Random();
static class Point2D
{
double x, y;
public Point2D()
{
x = rnd.nextDouble() * 2 - 1;
y = rnd.nextDouble() * 2 - 1;
}
1
static class Point10D
{
double x[] = new double[10];
public Point10D()
{
for(inti=0; i < x.length; i++)
X[i] = rnd.nextDouble() * 2 - 1;
}
1
static class Matrix
{
double[][] matrix = new double[30][30];
public Matrix() {}
public Matrix(Point10D[] points30D)
{
double max = 0;
for(inti=0;i<30; i++)
for(intj=0; j < 30; j++)
{
matrix[i][j] = calculateDistance10(points30D[i], points30D[j]);
if(matrix[i][j] > max)
max = matrix[i][j];
1
for(inti=0;i<30; i++)
for(intj=0; j < 30; j++)
matrix[i][j] /= max;
}
public Matrix(Point2D[] points2D)
{
double max = 0;
for(inti=0;i<30;i++)
for(intj=0; j < 30; j++)



{
matrix[i][j] = calculateDistance2(points2DIi], points2DI[j]);

if(matrix[i][j] > max)
max = matrix[i][j];
}
for(inti=0;i<30; i++)
for(intj=0; j < 30; j++)
matrix[i][j] /= max;
}
double getFitness()
{
double cnt =0;
for(inti=0;i<30;i++)
for(intj=0; j < 30; j++)
cnt += matrix[i][j];
return cnt;
}
}
static class Chromosome
{
double fitness;
Point2DI[] points2D = new Point2D[30];
public Chromosome()
{
for(inti=0;i<30;i++)
points2D[i] = new Point2D();
}
double calculateFitness(Matrix distance30)
{
Matrix distance2 = new Matrix(points2D);
fitness = calculateDifference(distance30, distance2).getFitness();
return fitness;
}
}
static class Generation
{
Chromosome[] chromosomes = new Chromosome[100];
public Generation()
{
for(inti=0;i<100; i++)
chromosomesli] = new Chromosome();

}

double calculateFitness(Matrix distance30)
{
for(inti=0;i<100; i++)
chromosomes]i].calculateFitness(distance30);
Arrays.sort(chromosomes, (01, 02) ->



{
if(ol.fitness > 02.fitness)
return 1;
else if(ol.fitness < 02.fitness)
return -1;
else
return O;
1;
return chromosomes[0].fitness;
}
}

static double calculateDistance10(Point10D first, Point10D second)
{
double cnt =0.0;
for(inti=0; i< 10; i++)
cnt += (first.x[i] - second.x][i]) * (first.x[i] - second.x[i]);
return Math.sqrt(cnt);
1
static double calculateDistance2(Point2D first, Point2D second)
{
return Math.sqrt((first.x - second.x) * (first.x - second.x) + (first.y - second.y) * (first.y - second.y));
1
static Matrix calculateDifference(Matrix first, Matrix second)
{
Matrix temp = new Matrix();
for(inti=0; i< 30; i++)
for(intj=0; j < 30; j++)
temp.matrix[i][j] = Math.abs(first.matrix[i][j] - second.matrix[i][j]);
return temp;
1
static Chromosome crossover(Chromosome first, Chromosome second)
{
Chromosome chromosome = new Chromosome();
for(int i = 0; i < chromosome.points2D.length; i++)
if(rnd.nextInt(60) == 0)
chromosome.points2D[i] = new Point2D();
else
chromosome.points2D[i] = rnd.nextInt(2) == 0 ? first.points2D[i] : second.points2DIi];
return chromosome;
1
static Generation createNewGeneration(Generation prevGeneration)
{
Generation generation = new Generation();
for(inti=0; i < generation.chromosomes.length; i++)
generation.chromosomesli] = crossover(prevGeneration.chromosomes[rnd.nextint(50)],
prevGeneration.chromosomes[rnd.nextint(50)]);



return generation;

}

public static void main(String[] args)
{
Point10D[] point10Ds = new Point10D[30];
for(inti=0;i<30; i++)
point10Ds[i] = new Point10D();
Matrix distance30 = new Matrix(point10Ds);

Generation prevGeneration = new Generation(), generation;
prevGeneration.calculateFitness(distance30);

for(inti=0;; i++)
{
generation = createNewGeneration(prevGeneration);
double fitness = generation.calculateFitness(distance30);
System.out.printin(i + ": " + fitness);
if(fitness <= 0.1)
break;
prevGeneration = generation;

}

System.out.printin();

}



