package com.badmanners;

import java.util.Arrays;
import java.util.Random;

public class Main
{
static Random rnd = new Random() ;
static class Point2D
{
double x, y;
public Point2D()
{
X = rnd.nextDouble() * 2 - 1;
y = rnd.nextDouble() * 2 - 1;
}
}
static class PointlOD
{
double x[] = new double[10];
public Pointl0D()
{
for(int i = 0; 1 < x.length; i++)
xXx[1] = rnd.nextDouble() * 2 - 1;
}
}
static class Matrix
{
double[] [] matrix = new double[30][30];
public Matrix() {}
public Matrix (PointlOD[] points30D)
{
double max = 0;
for(int 1 = 0
for (int j
{

i < 30; i++)
0; 7 < 30; j++)

| ~e

matrix[i] [j] = calculateDistancell(points30D[i],
points30D[]j]);

if (matrix[i] [j] > max)
max = matrix[i][]];
}
for(int 1 = 0
for (int j
matrix[i]

i < 30; 1i++)
0; 7 < 30; j++)
[J] /= max;

| ~e

}
public Matrix (Point2D[] points2D)
{
double max = 0;
for(int 1 = 0
for (int j

{

i < 30; i++)
0; 7 < 30; j++)

|| ~e

matrix[i] []J] = calculateDistanceZ(points2D[i],
points2D[j]);

if (matrix[i] [J] > max)
= matrix[i][]];

max =
}
for(int 1 = 0; i < 30; i++)
for(int j = 0; j < 30; j++)
matrix[i] [j] /= max;
}
double getFitness ()
{
double cnt = 0;
for(int i = 0; i < 30; i++)
for(int j = 0; J < 30; j++)
cnt += matrix[i] [J];
return cnt;
}
}
static class Chromosome
{
double fitness;
Point2D[] points2D = new Point2D[30];
public Chromosome ()
{
= 0; 1 < 30; i++)

for (int 1
= new Point2D{();

points2D[i]

}
double calculateFitness (Matrix distance30)

{
Matrix distance2 = new Matrix (points2D) ;
calculateDifference (distance30,

fitness =

distance?) .getFitness () ;
return fitness;

}
}
static class Generation

{

new Chromosome[100];

Chromosome|[] chromosomes

public Generation()

{
i < 100; 1i++)

for(int i = 0;
new Chromosome () ;

chromosomes [i]

}
double calculateFitness (Matrix distance30)

for(int 1 = 0; 1 < 100; i++)
chromosomes|[i] .calculateFitness (distance30);
(ol, 02) —>

{

Arrays.sort (chromosomes,

{
if(ol.fitness > o02.fitness)

return 1;
else if(ol.fitness < o2.fitness)
return -1;
else

return 0O;

1)

return chromosomes|[0].fitness;

}

static double calculateDistancelO (Pointl0D first, Pointl0D
second)
{
double cnt = 0.0;
for(int 1 = 0; i < 10; i++)
cnt += (first.x[i] - second.x[i]) * (first.x[i] -
second.x[1]);
return Math.sqgrt(cnt);
}
static double calculateDistance2 (Point2D first, Point2D
second)
{
return Math.sgrt((first.x - second.x) * (first.x -
second.x) t+ (first.y - second.y) * (first.y - second.y)):;
}
static Matrix calculateDifference (Matrix first, Matrix
second)
{
Matrix temp = new Matrix();
for(int i = 0; i < 30; i++)
for(int j = 0; J < 30; Jj++)
temp.matrix[i] [j] = Math.abs(first.matrix[i] []] -
second.matrix[i] [j])
return temp;

}

static Chromosome crossover (Chromosome first, Chromosome

second)
{
Chromosome chromosome = new Chromosome () ;
for(int i = 0; i1 < chromosome.points2D.length; i++)
if (rnd.nextInt (60) == 0)
chromosome.points2D[i] = new Point2D();
else
chromosome.points2D[i] = rnd.nextInt(2) == 0 ?
first.points2D[i] : second.points2D[i];

return chromosome;
}
static Generation createNewGeneration (Generation
prevGeneration)
{
Generation generation = new Generation () ;
for(int i = 0; i < generation.chromosomes.length; i++)
generation.chromosomes[i] =
crossover (prevGeneration.chromosomes [rnd.nextInt (50) 1],

prevGeneration.chromosomes | rnd.nextInt (50)]);
return generation;

}

public static void main(String[] args)

{
Pointl0OD[] pointl0ODs = new Pointl0D[30];
for(int 1 = 0; i < 30; i++)

pointl0Ds[i] = new PointlO0D{() ;
Matrix distance30 = new Matrix (pointlODs) ;
Generation prevGeneration = new Generation(), generation;

prevGeneration.calculateFitness (distance30) ;

for(int 1 = 0; ; 1i++)

{
generation = createNewGeneration (prevGeneration);
double fitness =

generation.calculateFitness (distance30);
System.out.println(i + ": " + fitness);
if(fitness <= 0.1)
break;

prevGeneration = generation;

}

System.out.println();

