
The problem of filling a backpack

We have a volume of the backpack, the price of items, the volume of items and the number of items
We need to maximize the price, minimize the volume so that the volume of the backpack is not
exceeded.
We need to show the top five backpacks to the first, last, and three intermediate generation

Fitness vs generation:

First generation:
Price Volume #1 #2 #3 #4 #5

7 1 97 66 58 42 27
9 4 13 60 62 82 78
2 5 28 48 36 37 88
2 1 20 53 54 61 31
9 8 19 1 51 60 20

10 6 15 4 29 87 34
10 9 77 81 20 66 44
8 3 12 30 28 24 24
3 9 10 68 97 14 32
9 8 52 77 24 4 34
8 4 95 69 16 58 74
9 1 54 15 20 96 91

10 6 52 9 36 57 55
8 3 22 68 34 48 7
1 3 30 77 12 61 20
6 5 48 2 32 35 77
3 3 95 72 83 38 42
1 9 17 78 74 36 71
6 8 67 18 68 58 67
8 10 39 37 2 5 98

Volume of all 4900 4292 4102 4528 4566
Price of all 5853 5308 4715 6659 6565

50000 generation:

100000 generation:

Price Volume #1 #2 #3 #4 #5
7 1 67 67 67 67 67
9 4 75 75 75 75 75
2 5 86 86 86 86 86
2 1 82 82 82 82 82
9 8 66 66 66 66 66

10 6 61 61 61 61 61
10 9 89 89 89 89 89
8 3 81 81 81 81 81
3 9 99 99 99 99 99
9 8 99 99 99 99 99
8 4 99 99 99 99 99
9 1 82 82 82 82 82

10 6 88 88 88 88 88
8 3 99 99 99 99 99
1 3 31 31 31 31 31
6 5 99 99 99 99 99
3 3 81 81 81 81 81
1 9 86 86 86 86 86
6 8 65 65 65 65 65
8 10 61 61 61 61 61

Volume of all 8538 8538 8538 8538 8538
Price of all 10444 10444 10444 10444 10444

Price Volume #1 #2 #3 #4 #5
7 1 80 80 80 80 80
9 4 86 86 86 86 86
2 5 99 99 99 99 99
2 1 95 95 95 95 95
9 8 73 73 73 73 73

10 6 75 75 75 75 75
10 9 99 99 99 99 99
8 3 90 90 90 90 90
3 9 11 11 11 11 11
9 8 99 99 99 99 99
8 4 99 99 99 99 99
9 1 94 94 94 94 94

10 6 99 99 99 99 99
8 3 99 99 99 99 99
1 3 39 39 39 39 39
6 5 6 6 6 6 6
3 3 95 95 95 95 95
1 9 95 95 95 95 95
6 8 80 80 80 80 80
8 10 71 71 71 71 71

Volume of all 8118 8118 8118 8118 8118
Price of all 10686 10686 10686 10686 10686

150000 generation:

200000 generation:

Price Volume #1 #2 #3 #4 #5
7 1 90 90 90 90 90
9 4 98 98 98 98 98
2 5 99 99 99 99 99
2 1 99 99 99 99 99
9 8 89 89 89 89 89

10 6 86 86 86 86 86
10 9 99 99 99 99 99
8 3 95 95 95 95 95
3 9 22 22 22 22 22
9 8 99 99 99 99 99
8 4 99 99 99 99 99
9 1 99 99 99 99 99

10 6 99 99 99 99 99
8 3 99 99 99 99 99
1 3 45 45 45 45 45
6 5 24 24 24 24 24
3 3 99 99 99 99 99
1 9 99 99 99 99 99
6 8 89 89 89 89 89
8 10 80 80 80 80 80

Volume of all 8811 8811 8811 8811 8811
Price of all 11500 11500 11500 11500 11500

Price Volume #1 #2 #3 #4 #5
7 1 99 99 99 99 99
9 4 99 99 99 99 99
2 5 99 99 99 99 99
2 1 8 8 8 8 8
9 8 96 96 96 96 96

10 6 99 99 99 99 99
10 9 99 99 99 99 99
8 3 99 99 99 99 99
3 9 32 32 32 32 32
9 8 99 99 99 99 99
8 4 99 99 99 99 99
9 1 99 99 99 99 99

10 6 99 99 99 99 99
8 3 99 99 99 99 99
1 3 54 54 54 54 54
6 5 33 33 33 33 33
3 3 7 7 7 7 7
1 9 0 0 0 0 0
6 8 98 98 98 98 98
8 10 84 84 84 84 84

Volume of all 7986 7986 7986 7986 7986
Price of all 11419 11419 11419 11419 11419

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_4
{
 class Program
 {
 static void Main(string[] args)
 {
 StreamWriter avgFitFile = new StreamWriter("averageFit.txt");
 StreamWriter maxFitFile = new StreamWriter("maxFit.txt");
 StreamWriter numGenFile = new StreamWriter("numGen.txt");
 StreamWriter tableFile = new StreamWriter("Table.txt");
 StreamWriter tablenum = new StreamWriter("Num.txt");
 StreamWriter gensFile = new StreamWriter("gens.txt");
 generation old_gens = new generation();
 old_gens.RandomizeStatic();
 old_gens.randomize();
 old_gens.setFitness();
 old_gens.setProbability();

 double maxFit = 0;
 int numGeneration = 0;
 for (int j = 0; (j < 1000) && (numGeneration < 200000); numGeneration++)
 {

 numGenFile.WriteLine(numGeneration.ToString());
 Console.WriteLine(old_gens.bestFitness() + " " + old_gens.getAverageFit() + " " +
old_gens.volume.Max());
 if (old_gens.bestFitness() == 0) break;
 List<int[]> new_tmp = new List<int[]>();
 old_gens.Sort(); //for truncate
 if(numGeneration == 0
 || numGeneration == 50000
 || numGeneration == 100000
 || numGeneration == 150000
 || numGeneration == 199999)
 {
 old_gens.GetFivebest();
 generation.indexOfMax++;
 }
 for (int i = 0; i < generation.numChromo; i++)
 {
 new_tmp.Add(old_gens.newChild());
 }

 old_gens.WriteTable(tableFile, tablenum);
 generation new_gens = new generation(new_tmp,old_gens.price,old_gens.valume);
 old_gens = new_gens;
 old_gens.setFitness();
 old_gens.setProbability();
 avgFitFile.WriteLine(old_gens.getAverageFit().ToString());
 maxFitFile.WriteLine(old_gens.bestFitness().ToString());
 //Console.ReadKey();
 //if (old_gens.bestFitness() > maxFit)
 //{
 // maxFit = old_gens.bestFitness();
 // j = 0;
 //}
 //else j++;

 }
 Console.ReadKey();
 tablenum.Close();
 tableFile.Close();
 numGenFile.Close();
 avgFitFile.Close();
 maxFitFile.Close();
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_4
{
 class generation
 {
 static public int numChromo = 40;
 static public int numGens = 20;
 static public int maxValume = 10000;
 static public int indexOfMax = 0;
 static public int countOfObject = 100;
 List<int[]> gens;
 List<int> fitness { get; }

 List<float> probability { get; }
 List<int> chromSelect;
 public List<int> price = new List<int>(numGens);
 public List<int> valume = new List<int>(numGens); //объём
 public List<int> volume = new List<int>(numChromo);
 public double averagefitness = 0f;
 // StreamWriter fitOut = new StreamWriter("fitOut.txt");
 // StreamWriter sharefitOut = new StreamWriter("sharefitOut.txt");
 // StreamWriter arrOut = new StreamWriter("arrOut.txt");

 Random mutat = new Random();
 int rando = 0;

 public generation()
 {
 gens = new List<int[]>();
 fitness = new List<int>();
 probability = new List<float>();
 chromSelect = new List<int>();

 for (int j = 0; j < numChromo; j++)
 {
 int[] gen = new int[numGens];
 gens.Add(gen);
 fitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 volume.Add(0);
 }
 }

 public generation(List<int[]> new_gens, List<int> p, List<int> v)
 {
 gens = new List<int[]>();
 fitness = new List<int>();
 probability = new List<float>();
 chromSelect = new List<int>();

 gens = new_gens;
 price = p;
 valume = v;
 for (int j = 0; j < numChromo; j++)
 {
 fitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 volume.Add(0);
 }
 }

 public void randomize()
 {

 Random rand = new Random();
 int _valume = 0;
 for (int i = 0; i < numChromo; i++)
 {
 for (;;)
 {
 for (int j = 0; j < numGens; j++)
 {

 gens[i][j] = rand.Next() % countOfObject;

 }
 for (int z = 0; z < numGens; z++)
 {
 _valume += gens[i][z] * valume[z];
 }
 if (_valume < maxValume) break;
 else volume[i] = _valume;
 _valume = 0;
 }
 }

 }
 public void setFitness()
 {
 int _valume = 0;
 for (int i = 0; i < numChromo; i++)
 {
 for (int j = 0; j < numGens; j++)
 {
 fitness[i] += gens[i][j] * price[j];
 _valume += gens[i][j] * valume[j];
 }
 if (_valume > maxValume)
 {
 fitness[i] = 0;
 volume[i] = _valume;
 }
 else volume[i] = _valume;
 _valume = 0;
 }

 }

 public void setProbability()
 {
 double mass = 0;
 for (int i = 0; i < numChromo; i++)
 {
 mass += fitness[i];
 }

 averagefitness = mass / numChromo;
 for (int i = 0; i < numChromo; i++)
 {
 probability[i] = (float)fitness[i] / (float)mass;
 }
 }
 public int[] newChild()
 {

 Random rand = new Random(DateTime.Now.TimeOfDay.Milliseconds + rando);
 rando++;
 if (rando == 10000000) rando = 0;
 int rand_num = rand.Next(numChromo / 2);
 float sum = 0f;
 int[] chrom_1 = new int[numGens], chrom_2 = new int[numGens];

 //for (int i = 0; i < 100; i++)
 //{
 // sum += probability[i] * numGens000000;
 // if (rand_num <= sum)
 // {
 // chromSelect[i]++;
 // chrom_1 = gens[i];
 // break;
 // }

 //}
 chrom_1 = gens[rand_num]; // for truncate
 sum = 0f;
 rand_num = rand.Next(numChromo / 2);
 //for (int i = 0; i < 100; i++)
 //{
 // sum += probability[i] * numGens000000;
 // if (rand_num <= sum)
 // {
 // chromSelect[i]++;
 // chrom_2 = gens[i];
 // break;
 // }
 //}
 chrom_2 = gens[rand_num]; // for truncate

 int[] new_chrom = new int[numGens];

 //uniform crossover
 for (int i = 0; i < numGens; i++)
 {
 if (rand.Next() % 2 == 1) new_chrom[i] = chrom_1[i];
 else new_chrom[i] = chrom_2[i];
 }

 //one point crossover
 //int point = rand.Next() % numGens;
 //for (int i = 0; i < numGens; i++)
 //{
 // if (i < point) new_chrom[i] = chrom_1[i];
 // else new_chrom[i] = chrom_2[i];
 //}
 Mutation(new_chrom);
 return new_chrom;
 }
 public double bestFitness()
 {
 return fitness.Max();
 }

 public void Sort()
 {
 for (int i = 0; i < numChromo - 1; i++)
 {
 bool swapped = false;
 for (int j = 0; j < numChromo - i - 1; j++)
 {
 if (fitness[j] < fitness[j + 1])
 {
 int[] tmp_gen = gens[j];
 gens[j] = gens[j + 1];
 gens[j + 1] = tmp_gen;

 int tmp_fit = fitness[j];
 fitness[j] = fitness[j + 1];
 fitness[j + 1] = tmp_fit;

 }

 }
 if (!swapped) break;
 }
 }
 public double getAverageFit()
 {
 return averagefitness;
 }
 public void WriteTable(StreamWriter file1, StreamWriter file2)
 {
 for (int i = 0; i < numChromo; i++)
 {
 file1.WriteLine(chromSelect[i].ToString());
 file2.WriteLine(i.ToString());
 }
 file1.WriteLine();

 file1.WriteLine();
 }
 public int[] GetMaxChromo()
 {
 return gens[0];
 }
 public int[] GetChromo(int index)
 {
 return gens[index];
 }

 private void Mutation(int[] chromo)
 {
 for (int i = 0; i < numGens; i++)
 {
 if (mutat.Next() % 20 == 1)
 {
 int tmp = mutat.Next() % countOfObject;
 if (tmp == chromo[i]) chromo[i] = (tmp + 1) % countOfObject;
 }
 }
 }

 public void RandomizeStatic()
 {
 Random rand = new Random();
 StreamWriter priceFile = new StreamWriter("price.txt");
 StreamWriter valumeFile = new StreamWriter("valume.txt");
 for (int i = 0; i < numGens; i++)
 {
 price.Add(rand.Next() % 10 + 1);
 valume.Add(rand.Next() % 10 + 1);
 priceFile.WriteLine(price[i]);
 valumeFile.WriteLine(valume[i]);
 }
 priceFile.Close();
 valumeFile.Close();
 }

 public void GetFivebest()
 {

 StreamWriter gensFile = new StreamWriter("gens"+indexOfMax+".txt");
 StreamWriter volumeFile = new StreamWriter("volume" + indexOfMax + ".txt");
 StreamWriter priceFile = new StreamWriter("prive" + indexOfMax + ".txt");
 for(int i = 0; i < 5; i++)
 {
 for(int j = 0; j<numGens;j++)
 gensFile.WriteLine(gens[i][j]);
 gensFile.WriteLine();
 volumeFile.WriteLine(volume[i]);
 priceFile.WriteLine(fitness[i]);

 }
 gensFile.Close();
 volumeFile.Close();
 priceFile.Close();
 }
 }
}

