
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_4
{
 class Program
 {
 static void Main(string[] args)
 {
 StreamWriter avgFitFile = new StreamWriter("averageFit.txt");
 StreamWriter maxFitFile = new StreamWriter("maxFit.txt");
 StreamWriter numGenFile = new StreamWriter("numGen.txt");
 StreamWriter tableFile = new StreamWriter("Table.txt");
 StreamWriter tablenum = new StreamWriter("Num.txt");
 generation old_gens = new generation();
 old_gens.RandomizeStatic();
 old_gens.randomize();
 old_gens.setFitness();
 old_gens.setProbability();

 double maxFit = 0;
 int numGeneration = 0;
 for (int j = 0; (j < 1000) && (numGeneration < 100000); numGeneration++)
 {

 numGenFile.WriteLine(numGeneration.ToString());

 Console.WriteLine(old_gens.bestFitness() + " " + old_gens.getAverageFit());
 if (old_gens.bestFitness() == 0) break;
 List<int[]> new_tmp = new List<int[]>();
 old_gens.Sort(); //for truncate
 for (int i = 0; i < generation.numChromo; i++)
 {
 new_tmp.Add(old_gens.newChild());
 }
 old_gens.WriteTable(tableFile, tablenum);
 generation new_gens = new generation(new_tmp,old_gens.price,old_gens.valume);
 old_gens = new_gens;
 old_gens.setFitness();
 old_gens.setProbability();
 avgFitFile.WriteLine(old_gens.getAverageFit().ToString());
 maxFitFile.WriteLine(old_gens.bestFitness().ToString());
 //Console.ReadKey();
 //if (old_gens.bestFitness() > maxFit)
 //{
 // maxFit = old_gens.bestFitness();
 // j = 0;
 //}
 //else j++;

 }
 Console.ReadKey();
 tablenum.Close();
 tableFile.Close();
 numGenFile.Close();
 avgFitFile.Close();
 maxFitFile.Close();
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_4
{
 class generation
 {
 static public int numChromo = 40;
 static public int numGens = 20;
 static public int maxValume = 10000;
 List<int[]> gens;
 List<int> fitness { get; }
 List<float> probability { get; }

 List<int> chromSelect;
 public List<int> price = new List<int>(numGens);
 public List<int> valume = new List<int>(numGens); //объём
 public double averagefitness = 0f;
 // StreamWriter fitOut = new StreamWriter("fitOut.txt");
 // StreamWriter sharefitOut = new StreamWriter("sharefitOut.txt");
 // StreamWriter arrOut = new StreamWriter("arrOut.txt");

 Random mutat = new Random();
 int rando = 0;

 public generation()
 {
 gens = new List<int[]>();
 fitness = new List<int>();
 probability = new List<float>();
 chromSelect = new List<int>();

 for (int j = 0; j < numChromo; j++)
 {
 int[] gen = new int[numGens];
 gens.Add(gen);
 fitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 }
 }

 public generation(List<int[]> new_gens, List<int> p, List<int> v)
 {
 gens = new List<int[]>();
 fitness = new List<int>();
 probability = new List<float>();
 chromSelect = new List<int>();

 gens = new_gens;
 price = p;
 valume = v;
 for (int j = 0; j < numChromo; j++)
 {
 fitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 }
 }

 public void randomize()
 {
 Random rand = new Random();
 int _valume = 0;
 for (int i = 0; i < numChromo; i++)
 {

 for (;;)
 {
 for (int j = 0; j < numGens; j++)
 {

 gens[i][j] = rand.Next() % 100;

 }
 for (int z = 0; z < numGens; z++)
 {
 _valume += gens[i][z] * valume[z];
 }
 if (_valume < maxValume) break;
 _valume = 0;
 }
 }

 }
 public void setFitness()
 {
 int _valume = 0;
 for (int i = 0; i < numChromo; i++)
 {
 for (int j = 0; j < numGens; j++)
 {
 fitness[i] += gens[i][j] * price[j];
 _valume += gens[i][j] * valume[j];
 }
 if (_valume > maxValume) fitness[i] = 0;
 _valume = 0;
 }

 }

 public void setProbability()
 {
 double mass = 0;
 for (int i = 0; i < numChromo; i++)
 {
 mass += fitness[i];
 }
 averagefitness = mass / numChromo;
 for (int i = 0; i < numChromo; i++)
 {
 probability[i] = (float)fitness[i] / (float)mass;
 }
 }
 public int[] newChild()
 {

 Random rand = new Random(DateTime.Now.TimeOfDay.Milliseconds + rando);

 rando++;
 if (rando == 10000000) rando = 0;
 int rand_num = rand.Next(numChromo / 2);
 float sum = 0f;
 int[] chrom_1 = new int[numGens], chrom_2 = new int[numGens];

 //for (int i = 0; i < 100; i++)
 //{
 // sum += probability[i] * numGens000000;
 // if (rand_num <= sum)
 // {
 // chromSelect[i]++;
 // chrom_1 = gens[i];
 // break;
 // }

 //}
 chrom_1 = gens[rand_num]; // for truncate
 sum = 0f;
 rand_num = rand.Next(numChromo / 2);
 //for (int i = 0; i < 100; i++)
 //{
 // sum += probability[i] * numGens000000;
 // if (rand_num <= sum)
 // {
 // chromSelect[i]++;
 // chrom_2 = gens[i];
 // break;
 // }
 //}
 chrom_2 = gens[rand_num]; // for truncate

 int[] new_chrom = new int[numGens];

 //uniform crossover
 for (int i = 0; i < numGens; i++)
 {
 if (rand.Next() % 2 == 1) new_chrom[i] = chrom_1[i];
 else new_chrom[i] = chrom_2[i];
 }

 //one point crossover
 //int point = rand.Next() % numGens;
 //for (int i = 0; i < numGens; i++)
 //{
 // if (i < point) new_chrom[i] = chrom_1[i];
 // else new_chrom[i] = chrom_2[i];
 //}
 Mutation(new_chrom);
 return new_chrom;

 }
 public double bestFitness()
 {
 return fitness.Max();
 }

 public void Sort()
 {
 for (int i = 0; i < numChromo - 1; i++)
 {
 bool swapped = false;
 for (int j = 0; j < numChromo - i - 1; j++)
 {
 if (fitness[j] < fitness[j + 1])
 {
 int[] tmp_gen = gens[j];
 gens[j] = gens[j + 1];
 gens[j + 1] = tmp_gen;

 int tmp_fit = fitness[j];
 fitness[j] = fitness[j + 1];
 fitness[j + 1] = tmp_fit;

 }

 }
 if (!swapped) break;
 }
 }
 public double getAverageFit()
 {
 return averagefitness;
 }
 public void WriteTable(StreamWriter file1, StreamWriter file2)
 {
 for (int i = 0; i < numChromo; i++)
 {
 file1.WriteLine(chromSelect[i].ToString());
 file2.WriteLine(i.ToString());
 }
 file1.WriteLine();
 file1.WriteLine();
 }
 public int[] GetMaxChromo()
 {
 return gens[0];
 }
 public int[] GetChromo(int index)
 {
 return gens[index];
 }

 private void Mutation(int[] chromo)
 {
 for (int i = 0; i < numGens; i++)
 {
 if (mutat.Next() % 20 == 1)
 {
 int tmp = mutat.Next() % 100;
 if (tmp == chromo[i]) chromo[i] = (tmp + 1) % 100;
 }
 }
 }

 public void RandomizeStatic()
 {
 Random rand = new Random();
 for (int i = 0; i < numGens; i++)
 {
 price.Add(rand.Next() % 10+1);
 valume.Add(rand.Next() % 10+1);
 }
 }

 }
}

