DENIS RAMSKIY Il 11

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

namespace BagApp

public class Gen

{

private List<ltem> hromosom;
public double fitness{set;get;}

public Gen(Random rnd)
{

hromosom = new List<ltem>();

int CalcFitness = 0, CalcVol = 0;;
for(int i=0;i<20;i++)

{

rnd .Next(Q)%60) ;

Item temp = new Item(rnd.Next(10) +1 , rnd.Next(10) +1,

CalcFitness += (temp.count * temp.price) / temp.volume;
CalcVol += temp.count * temp.volume;
hromosom.Add(temp);

}

it (CalcVol <= 1000)
fitness = CalcFitness;
else

fitness 0;

}
public Gen(Gen arg)
{

this_hromosom = new List<ltem>();
for (int 1 = 0; 1 < 20; i++)
this.hromosom.Add(arg[i]);
this.fitness = arg.fitness;
public Gen(List<ltem> arg)

this_hromosom = new List<ltem>();
foreach (ltem a in arg)

this.hromosom.Add(a);
this.fitness += (a.count * a.price)/a.volume;

}
}
static public Gen operator +(Gen argl, Gen arg2)
{

argl_hromosom = new List<ltem>();
for (int i = 0; 1 < 20; i++)
argl.hromosom.Add(arg2[i]);

argl.fitness = arg2.fitness;
return argl;

public Item this[int index]
{

get { return hromosom[index]; }

public void mutation(Random rnd)
{
for (int i = 0; 1 < 20; i++)
ifT (rnd_.Next() % 2000 < 1)
hromosom[i].count = rnd.Next() % 60;



}

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

namespace BagApp

{

public class Generation

{
private List<Gen> generation;
public double fitness{set;get;}

public Generation(Random rnd)
{
generation = new List<Gen>();
while (true)
{
Gen temp = new Gen(rnd);
if (temp.fitness 1= 0)

{
for (int 1 = 0; i<40;i++ )
generation.Add(temp);
break;
}

}
this.Sort();

}
public void Sort()

{
for (int 1 = 0; i < 40; i++)
for (int j = 0; j < 39; j++)
if (generation[j].fitness < generation[j + 1].fitness)
Gen temp = new Gen(generation[jl);
generation[j] += generation[j + 1];
generation[j + 1] += temp;
}
}
public List<Gen> get_parents(Random rnd)
{

List<Gen> TEMP = new List<Gen>();
TEMP.Add(generation[rnd.Next() % 20]);
TEMP.Add(generation[rnd.Next() % 20]);
return TEMP;

public Gen get_child(Random rnd, List<Gen> par)
{
List<ltem> TEMP = new List<ltem>();
for (int 1 = 0; 1 < 20; i++)
if (rnd.Next() % 2 == 0)
TEMP .Add(par[O01[i]1);
else
TEMP .Add(par[1][il]);
Gen child = new Gen(TEMP);

child.mutation(rnd);
return child;

public void new_generation(Random rnd)

{
List<Gen> ngeneration = new List<Gen>();
double nfitness = 0;
for (int 1 = 0; 1 < 40; i++)



}

ngeneration.Add(this.get_child(rnd, this.get_parents(rnd)));

nfitness += ngeneration[i].fitness / 40;

}

for (int 1 = 0; 1 < 40; i++)
this.generation[i] += ngeneration[i];

this.fitness = nfitness;

this.Sort();

public Gen this[int index]
{

}

get { return generation[index]; }

using System;

using System.Collections.Generic;
using System.Linqg;

using System.Text;

namespace BagApp

{

public class Item

{

}

public int price { set; get; }
public int volume { set; get; }
public int count { set; get; }

public Item(int pr, int vol, int n)
{

this.price = pr;

this.volume = vol;

this.count = n;

public Item(ltem arg)

{
this.price = arg.price;
this.volume = arg.volume;
this.count = arg.count;

}

using System;

using System.Collections.Generic;
using System.Linq;

using System.Text;

namespace BagApp

{

class Program

{

static void Main(string[] args)
{
Random rnd = new Random(DateTime.Now.Millisecond);
Generation work = new Generation(rnd);
while (true)
{
Console._WriteLine(work.fitness);
for (int 1 = 0; 1 < 20; i++)
{

Console._WriteLine(” Price: {0,6} Vol: {1,6} Count: {2,6}",
work[O][i]-price,work[O][i]-volume,work[O][i].count);

}
Console.ReadKey();



work.new_generation(rnd);



