Matvheychuk Alexandr.
“the Knapsack problem”
Graphs:

Min fitness = 930.
Max fithess = 1102.
Generations = 1000.

fitness vs generation
blue line - best fitness
orange line - avg fitness
1200

1000 f
800
600
400

200

AN O AN MODODWN AN O AN AN A NmM
N M™NO T 0 AN 0N O OOMm OO Ndgoo AN OAN OO MmN
A A A AN AN AN OO N TN NN O O ONNNOOOOOODOO
Price=1-10
Volume=1-10
Items 1 2 3 4 5 6 7 8
Price 1 7 8 9 9 7 9 8
Volume 4 4 1 9 10 8 4 6
Items 11 12 13 14 15 16 17 18
Price 4 3 5 7 6 2 1 1
Volume 3 9 7 4 6 7 10

5 better chromosomes in generation:
Max size of a knapsack <= 1000.

1st generation:

Chromosomes 1 2 3 4 5
4 2 13 9 4
13 12 13 13 13
6 6 10 4 6
4 13 1 13 9
9 12 11 9 9
1 3 6 2 1
6 8 10 13 6
12 7 1 4 12
13 3 6 10 13
8 8 12 6 8

Items count

13 8 5 11 13
8 9 10 9 8
8 7 4 7 8
10 6 9 13 10
11 4 11 2 11
11 12 7 4 11
11 7 10 10 11
3 1 3 1 4
8 10 11 13 8
9 12 13 10 9

Total Volume 939 897 897 929 985

Total Price 884 899 904 917 930

5st generation:

Chromosomes 1 2 3 4 5
9 9 9 9 9
13 13 13 13 13
4 4 4 4 4
13 13 13 13 13
9 9 9 9 9
2 2 4 6 4
13 13 13 13 13
6 4 4 4 4
10 10 9 10 7
Items count ° 8 2 6 6
11 11 11 11 11
7 7 9 9 9
9 9 7 7 7
13 13 13 13 13
2 2 2 2 8
9 9 4 9 4
9 9 9 9 9
1 1 1 6 1
13 13 13 13 13
10 10 10 10 10
Total Volume 962 958 942 991 956
Total Price 946 946 953 959 963

50st generation:

Chromosomes 1 2 3 4 5
8 8 8 8 5
13 13 13 13 13
9 9 8 9 9
13 13 13 13 13
9 9 9 9 9
9 9 9 9 9
13 13 13 13 13
8 8 8 8 8
8 6 8 6 8
[tems count 2 2 2 2 2
11 11 11 11 11
6 6 9 6 6
8 8 8 8 8
13 13 13 13 13
7 8 8 8 9
7 7 7 7 7
2 2 2 5 2
7 5 5 5 5
13 13 13 13 13
10 10 10 10 10
Total Volume 969 963 999 993 967
Total Price 1089 1091 1094 1094 1096

500st generation:

Chromosomes 1 2 3 4 5
2 3 3 2 3
13 13 13 13 13
9 9 9 9 9
13 13 13 13 13
9 9 9 9 9
9 9 9 9 9
13 13 13 13 13
9 9 9 9 9
1 3 3 6 3
Items count 2 2 2 2 2
9 9 9 9 9
5 5 5 5 7
8 8 8 8 8
13 13 13 13 13
9 9 9 9 9
9 8 8 7 8
7 7 7 8 7
3 3 3 3 3
13 13 13 13 13
10 10 10 10 10
Total Volume 973 980 980 994 998
Total Price 1090 1091 1091 1092 1097

1000st generation:

Chromosomes >
7 7 7 7 7
13 13 13 13 13
9 9 9 9 9
13 13 13 13 13
9 9 9 9 9
8 9 9 9 9
13 13 13 13 13
9 9 9 9 9
2 2 2 2 2
Items count 2 2 2 2 2
9 9 9 8 9
7 8 9 9 9
9 6 8 9 9
13 13 13 13 13
9 9 8 8 8
9 9 9 9 9
3 4 3 3 3
4 9 4 4 4
13 13 13 13 13
10 10 10 10 10
Total Volume 976 987 989 993 996
Total Price 1097 1098 1099 1100 1102

Source Code:

using
using
using
using
using
using

System;
System.Collections.Generic;
System.Ling;

System.IO;

System.Text;
System.Threading.Tasks;

namespace CIIT4

{

class Program

{

static void Main(string[] args)

{
int[] prices = new int[20];
int[] volumes = new int[20];
StreamiWriter pricewriter = new StreamWriter("prices.txt");
StreamiWriter volumeswriter = new StreamWriter("volumes.txt");
Random random = new Random(DateTime.Now.Millisecond);
for (int i = 0; i < 20; i++)

{
prices[i] = random.Next() % 10 + 1;
volumes[i] = random.Next() % 10 + 1;
pricewriter.WriteLine(prices[i]);
volumeswriter.WriteLine(volumes[i]);
}

pricewriter.Close();
volumeswriter.Close();

int maxBagVolume = 0;

List<Bag> bags = new List<Bag>();
for (int i = 0; i < 40; i++)

{
Bag bag = new Bag(prices, volumes, random);
bags.Add(bag);
//bag.ShowBag();
if (maxBagVolume < bag.totalVolume)
maxBagVolume = bag.totalVolume;
}

Console.WriteLine(bags[39].totalPrice);
Console.WriteLine(maxBagVolume);

var sortedBags = bags.OrderBy(x => x.totalPrice).ToList();
bags = sortedBags;

//while (true)
StreamWriter swr;
StreamWriter fitness = new StreamWriter("fit.txt");
for (int q = @0; q < 1000; qg++)
{
double avg = 0;
double Allfit = 0;
List<Bag> newBags = new List<Bag>();
for (int i = 0; i < 40; i++)
{
int j = random.Next (30, 39);
int k = random.Next(30, 39);
Bag newBag = bags[j].ChooseItems(bags[k], random);
//newBag.ShowBag();
Allfit += newBag.totalPrice;
newBags .Add(newBag);

bags = newBags.OrderBy(x => x.totalVolume < 1000 ? x.totalPrice
avg = Allfit / 4e;
fitness.Write(bags[39].totalPrice + " ");
fitness.WriteLine(avg);
if (q==0 || g==51]]| qg==50 || q==2500|| q==999)

swr = new StreamWriter(q + ".txt");

for (int i = 0; 1 < 40; i++)

{

swr.WriteLine(bags[i]);

swr.Close();

Console.WriteLine("Price: " + bags[39].totalPrice);
Console.WriteLine("Volume: " + bags[39].totalVolume);
}

fitness.Close();

Console.ReadKey();

}

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading.Tasks;

namespace CIIT4
{

class Bag
{
int[] prices;
int[] volumes;
int[] counts;
public int totalVolume { get; set; }
public int totalPrice { get; set; }

public Bag(int[] prices, int[] volumes, Random random)
{
this.prices = prices;
this.volumes = volumes;
counts = new int[20];
//Random random = new Random(DateTime.Now.Millisecond);
for (int i = @; i < prices.Length; i++)

{
counts[i] = random.Next() % 13 + 1;
totalPrice += counts[i] * prices[i];
totalVolume += counts[i] * volumes[i];
}

public Bag(int[] prices, int[] volumes, int[] counts)
{

this.prices = prices;

this.volumes = volumes;

this.counts = counts;

for (int i = @; i < prices.Length; i++)

{

: 0).TolList();

totalPrice += counts[i] * prices[i];
totalVolume += counts[i] * volumes[i];
}
¥
public Bag ChooseItems(Bag bag, Random random)
{
//Random random = new Random(DateTime.Now.Millisecond);
int[] newCounts = new int[20];
for (int i = @; i < prices.Length; i++)

{
int key = random.Next() % 1;
if (key == 0)
newCounts[i] = this.counts[i];
else
newCounts[i] = bag.counts[i];
}

newCounts[random.Next (0, 19)] = random.Next(1l, 10);

return new Bag(prices, volumes, newCounts);

}
public override string ToString()
{
StringBuilder sb = new StringBuilder();
for (int i = 0; i < 20; i++)
{
sb.Append(counts[i] + " ");
}
sb.Append(totalvVolume + " ");
sb.Append(totalPrice);
return sb.ToString();
}
public void ShowBag()
{
Console.WriteLine("Total Price: " + totalPrice);
Console.WriteLine("Total Volume: " + totalVolume);
Console.WriteLine(" ")

