
27.10 Roma Rudsky

using System;
using System.Collections.Generic;
using System.Linq;
using System.IO;
using System.Text;
using System.Threading.Tasks;
namespace CIIT4
{
 class Program
 {
 static void Main(string[] args)
 {
 int[] prices = new int[20];
 int[] volumes = new int[20];
 StreamWriter pricewriter = new StreamWriter("prices.txt");
 StreamWriter volumeswriter = new StreamWriter("volumes.txt");
 Random random = new Random(DateTime.Now.Millisecond);
 for (int i = 0; i < 20; i++)
 {
 prices[i] = random.Next() % 10 + 1;
 volumes[i] = random.Next() % 10 + 1;
 pricewriter.WriteLine(prices[i]);
 volumeswriter.WriteLine(volumes[i]);
 }
 pricewriter.Close();
 volumeswriter.Close();
 int maxBagVolume = 0;
 List<Bag> bags = new List<Bag>();
 for (int i = 0; i < 40; i++)
 {
 Bag bag = new Bag(prices, volumes, random);
 bags.Add(bag);
 //bag.ShowBag();

 if (maxBagVolume < bag.totalVolume)
 maxBagVolume = bag.totalVolume;
 }
 Console.WriteLine(bags[39].totalPrice);
 Console.WriteLine(maxBagVolume);

 var sortedBags = bags.OrderBy(x => x.totalPrice).ToList();
 bags = sortedBags;

 //while (true)
 StreamWriter swr;
 StreamWriter fitness = new StreamWriter("fit.txt");
 for (int q = 0; q < 1000; q++)
 {
 double avg = 0;
 double Allfit = 0;
 List<Bag> newBags = new List<Bag>();
 for (int i = 0; i < 40; i++)
 {
 int j = random.Next(30, 39);
 int k = random.Next(30, 39);
 Bag newBag = bags[j].ChooseItems(bags[k], random);
 //newBag.ShowBag();
 Allfit += newBag.totalPrice;

 newBags.Add(newBag);
 }

 bags = newBags.OrderBy(x => x.totalVolume < 1000 ? x.totalPrice : 0).ToList();
 avg = Allfit / 40;
 fitness.Write(bags[39].totalPrice + " ");
 fitness.WriteLine(avg);
 if (q == 0 || q == 5 || q == 50 || q == 500|| q == 999)
 {
 swr = new StreamWriter(q + ".txt");
 for (int i = 0; i < 40; i++)
 {
 swr.WriteLine(bags[i]);
 }
 swr.Close();
 }

 Console.WriteLine("Price: " + bags[39].totalPrice);
 Console.WriteLine("Volume: " + bags[39].totalVolume);
 }
 fitness.Close();

 Console.ReadKey();
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace CIIT4
{
 class Bag
 {
 int[] prices;
 int[] volumes;
 int[] counts;
 public int totalVolume { get; set; }
 public int totalPrice { get; set; }

 public Bag(int[] prices, int[] volumes, Random random)
 {
 this.prices = prices;
 this.volumes = volumes;
 counts = new int[20];
 //Random random = new Random(DateTime.Now.Millisecond);
 for (int i = 0; i < prices.Length; i++)
 {
 counts[i] = random.Next() % 13 + 1;

 totalPrice += counts[i] * prices[i];
 totalVolume += counts[i] * volumes[i];
 }
 }
 public Bag(int[] prices, int[] volumes, int[] counts)
 {
 this.prices = prices;
 this.volumes = volumes;
 this.counts = counts;
 for (int i = 0; i < prices.Length; i++)

 {
 totalPrice += counts[i] * prices[i];
 totalVolume += counts[i] * volumes[i];
 }
 }
 public Bag ChooseItems(Bag bag, Random random)
 {
 //Random random = new Random(DateTime.Now.Millisecond);
 int[] newCounts = new int[20];
 for (int i = 0; i < prices.Length; i++)
 {
 int key = random.Next() % 1;
 if (key == 0)
 newCounts[i] = this.counts[i];
 else
 newCounts[i] = bag.counts[i];
 }
 newCounts[random.Next(0, 19)] = random.Next(1, 10);

 return new Bag(prices, volumes, newCounts);
 }

 public override string ToString()
 {
 StringBuilder sb = new StringBuilder();
 for (int i = 0; i < 20; i++)
 {
 sb.Append(counts[i] + " ");
 }
 sb.Append(totalVolume + " ");
 sb.Append(totalPrice);
 return sb.ToString();
 }
 public void ShowBag()
 {
 Console.WriteLine("Total Price: " + totalPrice);
 Console.WriteLine("Total Volume: " + totalVolume);
 Console.WriteLine("____________________________");
 }
 }
}

Graphs:

Min fitness = 930.
Max fitness = 1102.
Generations = 1000.

Price = 1 – 10

Volume = 1 - 10

Items 1 2 3 4 5 6 7 8 9 10
Price 1 7 8 9 9 7 9 8 1 8
Volu 4 4 1 9 10 8 4 6 5 4

me

Items 11 12 13 14 15 16 17 18 19 20
Price 4 3 5 7 6 2 1 1 6 6
Volu
me 3 9 7 4 6 7 10 1 6 3

5 better chromosomes in generation:

Max size of a knapsack <= 1000.

1st generation:

Chromosome
s

1 2 3 4 5

Items count 4 2 13 9 4

13 12 13 13 13

6 6 10 4 6

4 13 1 13 9

9 12 11 9 9

1 3 6 2 1

6 8 10 13 6

12 7 1 4 12

13 3 6 10 13

8 8 12 6 8

13 8 5 11 13

8 9 10 9 8

8 7 4 7 8

10 6 9 13 10

11 4 11 2 11

11 12 7 4 11

11 7 10 10 11

3 1 3 1 4

8 10 11 13 8

9 12 13 10 9

Total Volume 939 897 897 929 985

Total Price 884 899 904 917 930

5st generation:

Chromosomes 1 2 3 4 5

Items count

9 9 9 9 9

13 13 13 13 13

4 4 4 4 4

13 13 13 13 13

9 9 9 9 9

2 2 4 6 4

13 13 13 13 13

6 4 4 4 4

10 10 9 10 7

6 8 9 6 6

11 11 11 11 11

7 7 9 9 9

9 9 7 7 7

13 13 13 13 13

2 2 2 2 8

9 9 4 9 4

9 9 9 9 9

1 1 1 6 1

13 13 13 13 13

10 10 10 10 10

Total Volume 962 958 942 991 956

Total Price 946 946 953 959 963

50st generation:

Chromosomes 1 2 3 4 5

Items count

8 8 8 8 5

13 13 13 13 13

9 9 8 9 9

13 13 13 13 13

9 9 9 9 9

9 9 9 9 9

13 13 13 13 13

8 8 8 8 8

8 6 8 6 8

9 9 9 9 9

11 11 11 11 11

6 6 9 6 6

8 8 8 8 8

13 13 13 13 13

7 8 8 8 9

7 7 7 7 7

2 2 2 5 2

7 5 5 5 5

13 13 13 13 13

10 10 10 10 10

Total Volume 969 963 999 993 967

Total Price 1089 1091 1094 1094 1096

500st generation:

Chromosomes 1 2 3 4 5

Items count

2 3 3 2 3

13 13 13 13 13

9 9 9 9 9

13 13 13 13 13

9 9 9 9 9

9 9 9 9 9

13 13 13 13 13

9 9 9 9 9

1 3 3 6 3

9 9 9 9 9

9 9 9 9 9

5 5 5 5 7

8 8 8 8 8

13 13 13 13 13

9 9 9 9 9

9 8 8 7 8

7 7 7 8 7

3 3 3 3 3

13 13 13 13 13

10 10 10 10 10

Total Volume 973 980 980 994 998

Total Price 1090 1091 1091 1092 1097

1000st generation:

Chromosomes 1 2 3 4 5

Items count

7 7 7 7 7

13 13 13 13 13

9 9 9 9 9

13 13 13 13 13

9 9 9 9 9

8 9 9 9 9

13 13 13 13 13

9 9 9 9 9

2 2 2 2 2

9 9 9 9 9

9 9 9 8 9

7 8 9 9 9

9 6 8 9 9

13 13 13 13 13

9 9 8 8 8

9 9 9 9 9

3 4 3 3 3

4 9 4 4 4

13 13 13 13 13

10 10 10 10 10

Total Volume 976 987 989 993 996

Total Price 1097 1098 1099 1100 1102

Graphs:

Min fitness = 930.
Max fitness = 1102.
Generations = 1000.

0

200

400

600

800

1000

1200

fitness vs generation
blue line - best fitness

orange line - avg fitness

