Contemporary Intelligent Information Techniques (CIIT)
Practice #5 (28/10/2016)
Siarhei Savaniuk (Al-10)

LabWork #5 Parate Optimum Solution- Dominate & Rank

Source code (written in Java)

File Individual.java:
import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class Individual {

public static final int GENE_LENGTH = 10;

private int[] genes;
private double yl;
private double y2;
private double x;

public Individual (boolean initialize, int condition) {
genes = new int[GENE LENGTH] ;

if (initialize) {
generateIndividual (condition) ;
StringBuilder sb = new StringBuilder();
for (int gene : genes) {
sb.append (gene) ;

}
x = Integer.parselInt(sb.toString(), 2) / 170.5;

yl = Math.pow(x - 2, 2);
y2 = Math.pow(x - 4, 2);

}

public Individual (int[] genes) {
this.genes = genes;
StringBuilder sb = new StringBuilder();
for (int gene : genes) {
sb.append (gene) ;

}
x = Integer.parselInt(sb.toString()) / 170.5;

yl = Math.pow(x - 2, 2);
y2 = Math.pow(x - 4, 2);
}

public double getYl () {
return yl;

}

public double getY2 () {
return y2;

}

public void generateIndividual (int condition) {

if (condition == 1) {
for (int i = 0; i < GENE_LENGTH; ++i) {
genes[i] = 0;

}
} else if (condition == 2) {
for (int i = 0; i < GENE_LENGTH; ++i) {
genes[i] = 1;
}
} else {

for (int i = 0; i < GENE LENGTH; ++1) {
genes[i] = ThreadLocalRandom.current() .nextInt (0, 2);

}

public double getX () {
return x;

}

public int[] getGenesBeforeCutPoint (int cutPoint) {
int[] genes = new int[cutPoint];

System.arraycopy (this.genes, 0, genes, 0, cutPoint);

return genes;

}

public int[] getGenesAfterCutPoint (int cutPoint) {
int[] genes = new int[GENE LENGTH - cutPoint];

System.arraycopy (this.genes, cutPoint, genes, 0, genes.length);

return genes;

}

@QOverride
public String toString () {
return "Individual{" +
"yl=" + yl +

", y2=" + y2 +

", x=" + x +

", genes=" + Arrays.toString(genes) +
v}v + v\nv;

File Population.java:
import java.util.Arrays;

public class Population ({
public static final int POPULATION SIZE = 20;
private Individual[] individuals;

public Population (boolean initialize) {
individuals = new Individual[POPULATION_SIZE];

if (initialize) {

individuals[0] = new Individual (true, 1);

for (int i1 = 1; i < POPULATION SIZE - 1; ++i) |
individuals[i] = new Individual (true, 0);

}

individuals [POPULATION SIZE - 1] = new Individual (true, 2);

}

public Population (Individual[] individuals) {
this.individuals = new Individual [POPULATION SIZE];
System.arraycopy(individuals, 0, this.individuals, O,
individuals.length) ;
}

public Individual getIndividual (int index) {
return individuals[index];

}

public void addIndividual (int index, Individual individual) {
individuals[index] = individual;
}
public Individual[] getHalfFittestIndividuals () {
Individual[] fittestIndividuals = new Individual [POPULATION SIZE /
21;

System.arraycopy(individuals, 0, fittestIndividuals, O,
fittestIndividuals.length) ;

return fittestIndividuals;

// public double getMaxFitness () |

// return individuals/[0].getFitnessValue() ;

// }

//

// public double getAverageFitness() |

// double sum = 0;

//

// for (int 1 = 0; 1 < POPULATIOZ\LSIZE; ++1) |
// sum += individuals[i].getFitnessValue() ;
// }

//

// return sum / POPULATIOZ\LSIZE;

// }

public Individual[] getAllIndividuals() {
return individuals;

}

@Override
public String toString() {
return "Population{\n" + Arrays.toString(individuals) + "}\n";

}

File GeneticAlgorithm.java:
import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {
private Population population;

public GeneticAlgorithm (Population population) {
this.population = population;

}

public Population run() {
Population nextGeneration = new
Population (population.getAllIndividuals());

for (int i = 0, j = Population.POPULATION SIZE / 2; i <
Population.POPULATION_SIZE / 4; ++1, J += 2) {

Individual[] parents = chooseParents (nextGeneration);

int cutPoint = ThreadLocalRandom.current () .nextInt (0,
Individual. GENE_LENGTH) ;

Individual[] descendants = crossover (parents, cutPoint);

nextGeneration.addIndividual (j, descendants[0]);
nextGeneration.addIndividual (j + 1, descendants[1l]);

population = nextGeneration;
Arrays.sort (population.getAllIndividuals());

return population;

}

private Individual[] chooseParents (Population fittestIndividuals) {
return new Individual []
{fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,

20)),

fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,

20)) }s
}

private Individual[] crossover (Individual[] parents, int curPoint) {
Individual[] descendants = new Individual[2];

int[] firstDescendantGenes =
concat (parents[0] .getGenesBeforeCutPoint (curPoint),
parents[l].getGenesAfterCutPoint (curPoint)) ;
int[] secondIndividualGenes =
concat (parents[0] .getGenesAfterCutPoint (curPoint),
parents[1l].getGenesBeforeCutPoint (curPoint));

descendants[0] new Individual (firstDescendantGenes) ;
descendants[l] = new Individual (secondIndividualGenes) ;

return descendants;

}

private int[] concat (int[] genesl, int[] genes2) {
int[] genes = new int[Individual.GENE LENGTH];

System.arraycopy (genesl, 0, genes, 0, genesl.length);
System.arraycopy (genes2, 0, genes, genesl.length, genes2.length);

return genes;

File Main.java:
/**
* Created by SergeiPC on 28.10.2016.
*
* 10 ren 20 xpomocom; x=0:6 (x-2)"2 (x-4)"2
*/
public class Main {
public static void main(String[] args) {
Population population = new Population (true);
for (Individual individual: population.getAllIndividuals()) {
System.out.println (individual) ;

