
Contemporary Intelligent Information Techniques (CIIT)

Practice #5 (28/10/2016)

Siarhei Savaniuk (AI-10)

LabWork #5 Parate Optimum Solution- Dominate & Rank

Source code (written in Java)
File Individual.java:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

public class Individual {

 public static final int GENE_LENGTH = 10;

 private int[] genes;

 private double y1;

 private double y2;

 private double x;

 public Individual(boolean initialize, int condition) {

 genes = new int[GENE_LENGTH];

 if (initialize) {

 generateIndividual(condition);

 StringBuilder sb = new StringBuilder();

 for (int gene : genes) {

 sb.append(gene);

 }

 x = Integer.parseInt(sb.toString(), 2) / 170.5;

 y1 = Math.pow(x - 2, 2);

 y2 = Math.pow(x - 4, 2);

 }

 }

 public Individual(int[] genes) {

 this.genes = genes;

 StringBuilder sb = new StringBuilder();

 for (int gene : genes) {

 sb.append(gene);

 }

 x = Integer.parseInt(sb.toString()) / 170.5;

 y1 = Math.pow(x - 2, 2);

 y2 = Math.pow(x - 4, 2);

 }

 public double getY1() {

 return y1;

 }

 public double getY2() {

 return y2;

 }

 public void generateIndividual(int condition) {

 if (condition == 1) {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = 0;

 }

 } else if (condition == 2) {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = 1;

 }

 } else {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = ThreadLocalRandom.current().nextInt(0, 2);

 }

 }

 }

 public double getX() {

 return x;

 }

 public int[] getGenesBeforeCutPoint(int cutPoint) {

 int[] genes = new int[cutPoint];

 System.arraycopy(this.genes, 0, genes, 0, cutPoint);

 return genes;

 }

 public int[] getGenesAfterCutPoint(int cutPoint) {

 int[] genes = new int[GENE_LENGTH - cutPoint];

 System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);

 return genes;

 }

 @Override

 public String toString() {

 return "Individual{" +

 "y1=" + y1 +

 ", y2=" + y2 +

 ", x=" + x +

 ", genes=" + Arrays.toString(genes) +

 '}' + '\n';

 }

}

File Population.java:
import java.util.Arrays;

public class Population {

 public static final int POPULATION_SIZE = 20;

 private Individual[] individuals;

 public Population(boolean initialize) {

 individuals = new Individual[POPULATION_SIZE];

 if (initialize) {

 individuals[0] = new Individual(true, 1);

 for (int i = 1; i < POPULATION_SIZE - 1; ++i) {

 individuals[i] = new Individual(true, 0);

 }

 individuals[POPULATION_SIZE - 1] = new Individual(true, 2);

 }

 }

 public Population(Individual[] individuals) {

 this.individuals = new Individual[POPULATION_SIZE];

 System.arraycopy(individuals, 0, this.individuals, 0,

individuals.length);

 }

 public Individual getIndividual(int index) {

 return individuals[index];

 }

 public void addIndividual(int index, Individual individual) {

 individuals[index] = individual;

 }

 public Individual[] getHalfFittestIndividuals() {

 Individual[] fittestIndividuals = new Individual[POPULATION_SIZE /

2];

 System.arraycopy(individuals, 0, fittestIndividuals, 0,

fittestIndividuals.length);

 return fittestIndividuals;

 }

// public double getMaxFitness() {

// return individuals[0].getFitnessValue();

// }

//

// public double getAverageFitness() {

// double sum = 0;

//

// for (int i = 0; i < POPULATION_SIZE; ++i) {

// sum += individuals[i].getFitnessValue();

// }

//

// return sum / POPULATION_SIZE;

// }

 public Individual[] getAllIndividuals() {

 return individuals;

 }

 @Override

 public String toString() {

 return "Population{\n" + Arrays.toString(individuals) + "}\n";

 }

}

File GeneticAlgorithm.java:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

 private Population population;

 public GeneticAlgorithm(Population population) {

 this.population = population;

 }

 public Population run() {

 Population nextGeneration = new

Population(population.getAllIndividuals());

 for (int i = 0, j = Population.POPULATION_SIZE / 2; i <

Population.POPULATION_SIZE / 4; ++i, j += 2) {

 Individual[] parents = chooseParents(nextGeneration);

 int cutPoint = ThreadLocalRandom.current().nextInt(0,

Individual.GENE_LENGTH);

 Individual[] descendants = crossover(parents, cutPoint);

 nextGeneration.addIndividual(j, descendants[0]);

 nextGeneration.addIndividual(j + 1, descendants[1]);

 }

 population = nextGeneration;

 Arrays.sort(population.getAllIndividuals());

 return population;

 }

 private Individual[] chooseParents(Population fittestIndividuals) {

 return new Individual[]

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

20)),

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

20))};

 }

 private Individual[] crossover(Individual[] parents, int curPoint) {

 Individual[] descendants = new Individual[2];

 int[] firstDescendantGenes =

concat(parents[0].getGenesBeforeCutPoint(curPoint),

 parents[1].getGenesAfterCutPoint(curPoint));

 int[] secondIndividualGenes =

concat(parents[0].getGenesAfterCutPoint(curPoint),

 parents[1].getGenesBeforeCutPoint(curPoint));

 descendants[0] = new Individual(firstDescendantGenes);

 descendants[1] = new Individual(secondIndividualGenes);

 return descendants;

 }

 private int[] concat(int[] genes1, int[] genes2) {

 int[] genes = new int[Individual.GENE_LENGTH];

 System.arraycopy(genes1, 0, genes, 0, genes1.length);

 System.arraycopy(genes2, 0, genes, genes1.length, genes2.length);

 return genes;

 }

}

File Main.java:
/**

 * Created by SergeiPC on 28.10.2016.

 *

 * 10 ген 20 хромосом; x=0:6 (x-2)^2 (x-4)^2

 */

public class Main {

 public static void main(String[] args) {

 Population population = new Population(true);

 for (Individual individual: population.getAllIndividuals()) {

 System.out.println(individual);

 }

 }

}

