3. Select individuals uniformly from population.

28.10.2016

Task 5: “Parate Optimal Solutions”.

Student: Maxim Malcev

Group: Al-10

Algorithm:
y1 = (x—2)%and y, = (x — 4)?;

1. Create twenty 10-bit binary chromosomes. Each chromosome represent
x-cordinate ranges from 0 to 6.
2. Calculate y1 and y, for each of 20 x's represented by these 20 chromosomes.

4. Perform crossover and mutation to create a child.
5. Calculate the rank of the new child.

6. Find the individual in the entire population that is most similar to the child. Replace that
individual with the new child if the child's ranking is better, or if the child dominates it.

7. Update the ranking of the population if the child has been inserted.
8. Perform steps 2-6 according to the population size.

Results:
First iteration:
Ne | Chromosome X V1 V2 Rank
1 | 0000011101 0.167784 3.357015 | 14.68587947 | 8
2 | 1001011110 3.556478 2.422624 | 0.196711764 | 0
3 | 0001101100 | 0.634562 1.864421 | 11.32617293 1
4 | 1111001010 5.691473 13.62697 | 2.86108091 | 8
5 | 0000101010 | 0.244221 3.08276 | 14.1058759 | 3
6 | 1010001000 3.801497 3.245391 | 0.039403441 | 2
7 | 0000111011 0.345692 2.736735 | 13.35396696 | 3
8 | 0010000110 | 0.783452 1.479989 | 10.34618104 | O
9 | 1011111110| 4.492785 6.213977 | 0.242837056 | 8
10 | 0011100101 1.345764 0.428025 | 7.044968744 | 5
11| 1101000001 | 4.884578 8.32079 | 0.782478238 1
12 | 1000100101 3.218965 1.485876 | 0.610015671 | 6
13| 1101110110 5.197356 10.22309 | 1.433661391 | 5
14 | 0100010110 1.628947 0.13768 | 5.621892329 | 2
15| 1110101000 5.490142 12.18109 | 2.22052318 | 5
16 | 0111001011 2.690142 0.476296 | 1.71572798 | 8
17 | 1110100011 5.460145 11.9726 | 2.132023421 | 8
18 | 0010011000 | 0.891336 1.229137 | 9.663794974 | 4
19| 1110110110 5.571457 12.75531 | 2.469477103 | 4
20 | 0101110010 2.170447 0.029052 | 3.34726418 | 5

—_—y=(x-2)42

g y=(n-4)"2

&

¥

~ — d_,_,.f""'j

) 0 1 2 3 4 5 6

Intermediate iteration 1:

Ne | Chromosome X V1 V2 Rank
1 | 0001010111 0.510244 2.219373 | 12.17839694 | 3
2 | 0001110110 | 0.690145 1.71572 | 10.95514012 | 5
3 | 0110100000 2.441423 0.194854 | 2.429162265 | 5
4 | 0100000011 1.521454 0.229006 | 6.143190274 | 5
5 | 1000100001 3.194756 1.427442 0.6484179 1
6 | 0011010001 1.224736 0.601034 | 7.70209027 | O
7 | 1100000101 4.532475 6.41343 | 0.283529626 | 3
8 | 0111001110 2.712145 0.507151 | 1.658570501 | 4
9 | 1001101000 3.612478 2.600085 0.1501733 | 4
10 | 1101000101 4.910147 8.468956 | 0.828367562 | 5
11| 0001111110 | 0.741785 1.583105 | 10.61596499 | 4
12| 1101010010 | 4.987574 8.925598 | 0.975302405 | 4
13 | 0010101000 | 0.985473 1.029265 | 9.087373034 | 3
14| 1101111010 5.220145 10.36933 | 1.488753821 | 5
15| 0010001011 0.812473 1.41022 | 10.16032838 | 4
16 | 1000101010 3.251425 1.566065 | 0.560364531 | O
17 | 0110101001 2.493248 0.243294 | 2.27030159 | 2
18 | 0001100101 0.590142 1.9877 | 11.62713158 | 0
19| 0111111000 2.954723 0.911496 | 1.092604007 | 2
20 | 0100011011 1.662254 0.114072 | 5.465056361 | 5

—_—=-2) %2

8 y=(x-4) "2

B

2

0 — =T

0 1 2 3 4 5 6

Intermediate iteration 2:

Ne | Chromosome X V1 V2 Rank
1 | 0011010110 | 1.256475 0.552829 | 7.526929426 | 2
2 | 1001101111 | 3.652147 2.72959 | 0.12100171| 3
3 | 1101001100 4.95201 8.714363 | 0.90632304 | 5
4 | 0011110011 | 1.422542 0.333458 | 6.643289742 | 4
5 | 1100010110 | 4.632014 6.927498 | 0.399441696 | 1
6 | 0011110111 | 1.445789 0.30715 | 6.523993833 | O
7 | 1011111110 | 4.490111 6.200653 | 0.240208792 | 3
8 | 0010101000 | 0.985472 1.029267 | 9.087379063 | 2
9 | 0110100010 | 2.451452 0.203809 | 2.398000908 | 4
10| 1001001011 | 3.445721 2.090109 | 0.30722521| 3
11| 0111011011 | 2.784572 0.615553 | 1.477265223 | 4
12 | 0110000000 | 2.251457 0.063231 | 3.057402623 | 4
13| 1011111101 | 4.485754 6.178973 | 0.235956949 | 3
14 | 1001010111 | 3.514574 2.293934 | 0.235638401 | 5
15| 1011011001 | 4.274147 5.171745 | 0.075156578 | 1
16 | 0111111111 | 2.995424 0.990869 | 1.00917294 | O
17 | 0100001001 | 1.554214 0.198725 | 5.981869158 | 2
18 | 0011101001 | 1.365475 0.402622 | 6.940721976 | O
19| 1010100101 | 3.914756 3.666291 | 0.00726654 | 2
20 | 1000001111 | 3.089745 1.187544 | 0.828564165 | 4

—_—y=(x-2)42

B y={x-4)"2

&

2

. —~

) 0 1 2 3 4 5 6

Intermediate iteration 3:

Ne | Chromosome X V1 V2 Rank
1 | 1100001101 | 4.582554 6.669585 | 0.339369163 | 2
2 | 0100001001 1.554745 0.198252 | 5.979272015 | O
3 | 0110000010 2.265784 0.070641 | 3.007505135 | 2
4 | 1000100100 3.214793 1.475722 | 0.616550033 | 2
5 | 0101000011 1.896589 0.010694 | 4.424337835 1
6 | 0101110111 2.200345 0.040138 | 3.238758119 | 0
7 | 1001111100 3.732547 3.001719 | 0.071531107 | 3
8 | 0101110101 2.185476 0.034401 | 3.292497347 | 2
9 0010111100 1.102457 0.805583 | 8.395755437 | 4
10 | 1011111101 | 4.487485 6.187582 | 0.237641625 | 3
11| 1100000011 | 4.521245 6.356676 | 0.27169635 1
12 | 1010101110 | 4.023214 4.093395 | 0.00053889 | O
13| 0111011011 2.787845 0.6207 | 1.469319744 | 3
14 | 0011110011 1.424154 0.331599 | 6.634982616 | 5
15| 1000010011 3.112145 1.236867 | 0.788286501 1
16 | 0110100010 2.452141 0.204431 | 2.395867484 | 0
17 | 0111110110 2.941475 0.886375 | 1.120475176 | 2
18 | 0011101000 1.362536 0.40636 | 6.956216351 | O
19 | 1001110001 3.665242 2.773031 | 0.112062919 | 2
20 | 0111001011 2.689898 0.475959 | 1.71636725| 4

(=)

Last iteration:

—_—=-2) %2
y=(x-41"2
R "””F-f
1 2 3 4 5 &
Ne | Chromosome X V1 V2 Rank
1 | 1010100111 | 3.982521 3.93039 | 0.000305515 | 2
2 | 0011010111 | 3.001475| 1.002952 | 0.997052176 | 1
3 | 1000100100 | 3.215224 | 1.476769 | 0.61587337 | O
4 | 0101101110 | 2.145457 | 0.021158 | 3.439329739 | 1
5 | 1010000010 | 3.765658 | 3.117548 | 0.054916173 | O
6 | 0110001010 | 2.310015 | 0.096109 | 2.8560493 | 1
7 | 0111010100 | 2.745862 0.55631 | 1.572862123 | 0
8 | 0110101100 | 2.510421 0.26053 | 2.218845597 | 2
9 | 1000010101 | 3.124357 | 1.264179 | 0.766750663 | O
10 | 1010011011 | 3.912457 | 3.657492 | 0.007663777 | O
11| 0101110000 | 2.156348 | 0.024445 | 3.399052697 | 0
12| 1001111110 | 3.741545 | 3.032979 | 0.066798987 | 0
13 | 1000000100 | 3.025121 | 1.050873 | 0.950389065 | 1
14 | 0110010111 | 2.385462 | 0.148581 | 2.606732953 | 0
15| 0101111011 | 2.220155| 0.048468 | 3.167848224 | 1
16 | 1001010000 | 3.472458 | 2.168133 | 0.278300562 | 0
17 | 1010001111 | 3.842576 | 3.395086 | 0.024782316 | 2
18 | 0110100010 | 2.452235 | 0.204516 | 2.395576495 | 0
19| 0111111000 | 2.953225| 0.908638 | 1.095737901 | 2
20 | 0101100100 | 2.085254 | 0.007268 | 3.666252245 | 0

18

y=(x-2)"2

y=(x-4)t2

Graph: Maximum fitness vs generation.

10

fitness
L

0 100 200 300 400 500 &00 T00

generation

Graph: Average fitness vs generation.

45

a5

{1
0 100 208 300 400 300 G 700 200

generation

Source code:

import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class Individual {

public static final int GENE LENGTH = 10;
private int[] genes;

private double x;

private double yl;

private double y2;

private int rank;

public Individual (boolean initialize) {
genes = new int[GENE LENGTH];
if (initialize) {
generatelIndividual () ;
this.x = calculateX();
this.yl = calculateYl();
this.y2 = calculateY2();
this.rank = 0;
}
}

public Individual (int[] genes) { this.genes = genes;
this.x = calculateX(); this.yl = calculateYl(); this.y2 =
calculateY2 () ; this.rank = 0;

}

public double getX () { return x;

}

public double getY1l () { return yl;

}

public double getY2 () { return y2;

} public int getRank() { return rank;

} public int updateRank () { return ++this.rank;

} public void resetRank () { this.rank = 0;

}

public void generateIndividual () { for (int i = 0; 1 <

GENE _LENGTH; ++1i) {
genes[i] = ThreadLocalRandom.current () .nextInt (0, 2);

}

}

public double calculateX() { return
Integer.parselnt (Arrays. toString(genes) .replaceAll ("[,\\[\\]
m, ", 2) / 170.5;

}

public double calculateYl () { return Math.pow(x - 2, 2);

} public double calculateY2 () { return Math.pow(x - 4, 2);

} public int[] getGenesBeforeCutPoint (int cutPoint) { int[]
genes = new int[cutPoint];

System.arraycopy(this.genes, 0, genes, 0, cutPoint); return

genes;

}

public int[] getGenesAfterCutPoint (int cutPoint) { int[] genes =

new int [GENE LENGTH - cutPoint];
System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);
return genes;

}

@Override
public boolean equals (Object o) { if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Individual that = (Individual) o;
if (Double.compare(that.yl, yl) != 0) return false; if
(Double.compare (that.y2, y2) != 0) return false; if
(Double.compare (that.x, x) != 0) return false; if (rank != that.rank)
return false; return Arrays.equals(genes, that.genes);
}
@Override public int hashCode () { int result; long
temp;
result = Arrays.hashCode (genes) ; temp =
Double.doubleToLongBits (yl) ;
result = 31 * result + (int) (temp * (temp >>> 32)); temp =
Double.doubleToLongBits (y2) ;
result = 31 * result + (int) (temp ©~ (temp >>> 32)); temp =
Double.doubleToLongBits (x) ;
result = 31 * result + (int) (temp ~ (temp >>> 32)); result =
31 * result + rank; return result;
}
@Override
public String toString() { return "Individual{" +
"genes=" + Arrays.toString(genes) +

", x=" 4+ x +

", yl=" + oyl o+

", y2=" + y2 +

", rank=" + rank +
\ } \ ,.

bl

File Population.java:
import java.util.Arrays;

public class Population ({

public static final int POPULATION SIZE = 20;
private Individual[] individuals;

public Population (boolean initialize) { individuals = new
Individual [POPULATION_SIZE] ;

if (initialize) {

for (int 1 = 0; i < POPULATION SIZE; ++i) {

individuals[i] = new Individual (true);
}
}
}
public Population(Individual[] individuals) { this.individuals =
new Individual [POPULATION SIZE]; System.arraycopy(individuals, O,

this.individuals, 0, individuals.length);

}

public Individual getIndividual (int index) { return
individuals[index];

}

public void replacelIndividual (Individual individual, Individual child) {

for (int 1 = 0; 1 < individuals.length; ++i) { if
(individuals[i] .equals (individual)) { individuals[i] = child;
break;

}

}

}

public Individual[] getAllIndividuals() { return individuals;

}

public void calculateRankForAllIndividuals () { resetRank () ;

for (int 1 = 0; i < POPULATION SIZE; ++i) { for (int j =
0; 3 < POPULATION SIZE; ++3j) { if (1 '= 3 &&
(individuals[i] .getY1l () < individuals[]j].getYl() &&
individuals[i].getY2 () < individuals[j].getY2())) {

individuals[i] .updateRank () ;

}
private void resetRank() {
for (Individual individual: individuals) {
individual.resetRank () ;
}
}

@Override
public String toString() { return "Population{\n" +
Arrays.toString(individuals) + "}\n";

bl

File GeneticAlgorithm.java:
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {
private Population population;

public GeneticAlgorithm (Population population) { this.population
= population;
}
public Population run() {
Population nextGeneration = new
Population (population.getAllIndividuals());
nextGeneration.calculateRankForAllIndividuals () ; for (int 1
= 0; i < Population.POPULATION SIZE; ++i) {
Individual[] parents = chooseParents (nextGeneration) ;
int cutPoint = ThreadLocalRandom.current () .nextInt (0,
Individual.GENE LENGTH) ;
Individual[] children = crossover (parents, cutPoint);
Individual child = getBetterIndividualFromTwoChildren (children) ;
calculateIndividualRank (child) ; Individual individual =

findIndividualThatMostSimilarToChild (child) ;

if (childBetterThanParent (individual, child)) {
nextGeneration.replaceIndividual (individual, child);
nextGeneration.calculateRankForAllIndividuals () ;
}
}
population = nextGeneration; return population;
}
private Individual[] chooseParents (Population fittestIndividuals) {
return new Individuall]

{fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,
Population.POPULATION SIZE)),

fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,
Population. POPULATION SIZE))};
}
private Individual[] crossover (Individual[] parents, int curPoint) {
Individual[] descendants = new Individual[2];

int[] firstDescendantGenes =
concat (parents[0] .getGenesBeforeCutPoint (curPoint),
parents[1l].getGenesAfterCutPoint (curPoint)) ; int[]
secondIndividualGenes = concat (parents[0] .getGenesAfterCutPoint (curPoint),
parents[l].getGenesBeforeCutPoint (curPoint)) ;
descendants[0] = new Individual (firstDescendantGenes);
descendants[1l] = new Individual (secondIndividualGenes) ;

return descendants;
}
private Individual getBetterIndividualFromTwoChildren (Individuall]
children) {
return calculateIndividualRank (children([0]) >
calculateIndividualRank (children[1l]) ? children][0]
children(1]; }
private Individual findIndividualThatMostSimilarToChild (Individual child)
{
Individual individual = population.getIndividual (0); double
minX = Math.abs (population.getIndividual (0) .getX () - child.getX());
for (int 1 = 1; i < Population.POPULATION SIZE; ++i) {
double tempMinX = Math.abs(population.getIndividual (i) .getX () -
child.getX());
if (tempMinX < minX) { minX = tempMinX;
individual = population.getIndividual (1) ; }

return individual;
}
private boolean childBetterThanParent (Individual individual, Individual
child) {

return child.getRank () > individual.getRank() || (child.getYl () <
individual.getY1l () && child.getY2 () < individual.getY2());

} private int calculateIndividualRank (Individual individual) {
for (int i = 0; i1 < Population.POPULATION SIZE; ++i) { if
(individual.getYl () < population.getIndividual (i) .get¥Yl() &&
individual.getY2 () < population.getIndividual (i) .getY2()) {

individual.updateRank () ;
} }
return individual.getRank () ;
} private int[] concat (int[] genesl, int[] genes2) { int[]
genes = new int[Individual.GENE LENGTH];

System.arraycopy(genesl, 0, genes, 0, genesl.length);
System.arraycopy(genes2, 0, genes, genesl.length, genes2.length);

return genes;

File Main.java:
import java.io.FileWriter; import java.io.IOException;

public class Main {
public static void main(String[] args) throws IOException ({
FileWriter writer = new FileWriter ("output.txt");
Population population = new Population (true);
GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

for (int 1 = 0; 1 < 800; ++i) { population =
geneticAlgorithm.run () ;
System.out.println((i + 1));

writer.write(1 + 1) + ":\n");
for (IRXeRRENReBENl individual: population.getAllIndividuals()) {

writer.write (individual.toString() + "\n");
System.out.println (individual) ;

