
28.10.2016

Task 5: “Parate Optimal Solutions”.

Student: Maxim Malcev

Group: AI – 10

Algorithm:
𝑦1 = (𝑥 − 2)2 and 𝑦2 = (𝑥 − 4)2;

1. Create twenty 10-bit binary chromosomes. Each chromosome represent

x-cordinate ranges from 0 to 6.

2. Calculate 𝑦1 and 𝑦2 for each of 20 x's represented by these 20 chromosomes.

3. Select individuals uniformly from population.

4. Perform crossover and mutation to create a child.

5. Calculate the rank of the new child.

6. Find the individual in the entire population that is most similar to the child. Replace that

individual with the new child if the child's ranking is better, or if the child dominates it.

7. Update the ranking of the population if the child has been inserted.

8. Perform steps 2-6 according to the population size.

Results:

First iteration:

№ Chromosome x 𝑦1 𝑦2 Rank

1 0000011101 0.167784 3.357015 14.68587947 8

2 1001011110 3.556478 2.422624 0.196711764 0

3 0001101100 0.634562 1.864421 11.32617293 1

4 1111001010 5.691473 13.62697 2.86108091 8

5 0000101010 0.244221 3.08276 14.1058759 3

6 1010001000 3.801497 3.245391 0.039403441 2

7 0000111011 0.345692 2.736735 13.35396696 3

8 0010000110 0.783452 1.479989 10.34618104 0

9 1011111110 4.492785 6.213977 0.242837056 8

10 0011100101 1.345764 0.428025 7.044968744 5

11 1101000001 4.884578 8.32079 0.782478238 1

12 1000100101 3.218965 1.485876 0.610015671 6

13 1101110110 5.197356 10.22309 1.433661391 5

14 0100010110 1.628947 0.13768 5.621892329 2

15 1110101000 5.490142 12.18109 2.22052318 5

16 0111001011 2.690142 0.476296 1.71572798 8

17 1110100011 5.460145 11.9726 2.132023421 8

18 0010011000 0.891336 1.229137 9.663794974 4

19 1110110110 5.571457 12.75531 2.469477103 4

20 0101110010 2.170447 0.029052 3.34726418 5

Intermediate iteration 1:

№ Chromosome x 𝑦1 𝑦2 Rank

1 0001010111 0.510244 2.219373 12.17839694 3

2 0001110110 0.690145 1.71572 10.95514012 5

3 0110100000 2.441423 0.194854 2.429162265 5

4 0100000011 1.521454 0.229006 6.143190274 5

5 1000100001 3.194756 1.427442 0.6484179 1

6 0011010001 1.224736 0.601034 7.70209027 0

7 1100000101 4.532475 6.41343 0.283529626 3

8 0111001110 2.712145 0.507151 1.658570501 4

9 1001101000 3.612478 2.600085 0.1501733 4

10 1101000101 4.910147 8.468956 0.828367562 5

11 0001111110 0.741785 1.583105 10.61596499 4

12 1101010010 4.987574 8.925598 0.975302405 4

13 0010101000 0.985473 1.029265 9.087373034 3

14 1101111010 5.220145 10.36933 1.488753821 5

15 0010001011 0.812473 1.41022 10.16032838 4

16 1000101010 3.251425 1.566065 0.560364531 0

17 0110101001 2.493248 0.243294 2.27030159 2

18 0001100101 0.590142 1.9877 11.62713158 0

19 0111111000 2.954723 0.911496 1.092604007 2

20 0100011011 1.662254 0.114072 5.465056361 5

Intermediate iteration 2:

№ Chromosome x 𝑦1 𝑦2 Rank

1 0011010110 1.256475 0.552829 7.526929426 2

2 1001101111 3.652147 2.72959 0.12100171 3

3 1101001100 4.95201 8.714363 0.90632304 5

4 0011110011 1.422542 0.333458 6.643289742 4

5 1100010110 4.632014 6.927498 0.399441696 1

6 0011110111 1.445789 0.30715 6.523993833 0

7 1011111110 4.490111 6.200653 0.240208792 3

8 0010101000 0.985472 1.029267 9.087379063 2

9 0110100010 2.451452 0.203809 2.398000908 4

10 1001001011 3.445721 2.090109 0.30722521 3

11 0111011011 2.784572 0.615553 1.477265223 4

12 0110000000 2.251457 0.063231 3.057402623 4

13 1011111101 4.485754 6.178973 0.235956949 3

14 1001010111 3.514574 2.293934 0.235638401 5

15 1011011001 4.274147 5.171745 0.075156578 1

16 0111111111 2.995424 0.990869 1.00917294 0

17 0100001001 1.554214 0.198725 5.981869158 2

18 0011101001 1.365475 0.402622 6.940721976 0

19 1010100101 3.914756 3.666291 0.00726654 2

20 1000001111 3.089745 1.187544 0.828564165 4

Intermediate iteration 3:

№ Chromosome x 𝑦1 𝑦2 Rank

1 1100001101 4.582554 6.669585 0.339369163 2

2 0100001001 1.554745 0.198252 5.979272015 0

3 0110000010 2.265784 0.070641 3.007505135 2

4 1000100100 3.214793 1.475722 0.616550033 2

5 0101000011 1.896589 0.010694 4.424337835 1

6 0101110111 2.200345 0.040138 3.238758119 0

7 1001111100 3.732547 3.001719 0.071531107 3

8 0101110101 2.185476 0.034401 3.292497347 2

9 0010111100 1.102457 0.805583 8.395755437 4

10 1011111101 4.487485 6.187582 0.237641625 3

11 1100000011 4.521245 6.356676 0.27169635 1

12 1010101110 4.023214 4.093395 0.00053889 0

13 0111011011 2.787845 0.6207 1.469319744 3

14 0011110011 1.424154 0.331599 6.634982616 5

15 1000010011 3.112145 1.236867 0.788286501 1

16 0110100010 2.452141 0.204431 2.395867484 0

17 0111110110 2.941475 0.886375 1.120475176 2

18 0011101000 1.362536 0.40636 6.956216351 0

19 1001110001 3.665242 2.773031 0.112062919 2

20 0111001011 2.689898 0.475959 1.71636725 4

Last iteration:

№ Chromosome x 𝑦1 𝑦2 Rank

1 1010100111 3.982521 3.93039 0.000305515 2

2 0011010111 3.001475 1.002952 0.997052176 1

3 1000100100 3.215224 1.476769 0.61587337 0

4 0101101110 2.145457 0.021158 3.439329739 1

5 1010000010 3.765658 3.117548 0.054916173 0

6 0110001010 2.310015 0.096109 2.8560493 1

7 0111010100 2.745862 0.55631 1.572862123 0

8 0110101100 2.510421 0.26053 2.218845597 2

9 1000010101 3.124357 1.264179 0.766750663 0

10 1010011011 3.912457 3.657492 0.007663777 0

11 0101110000 2.156348 0.024445 3.399052697 0

12 1001111110 3.741545 3.032979 0.066798987 0

13 1000000100 3.025121 1.050873 0.950389065 1

14 0110010111 2.385462 0.148581 2.606732953 0

15 0101111011 2.220155 0.048468 3.167848224 1

16 1001010000 3.472458 2.168133 0.278300562 0

17 1010001111 3.842576 3.395086 0.024782316 2

18 0110100010 2.452235 0.204516 2.395576495 0

19 0111111000 2.953225 0.908638 1.095737901 2

20 0101100100 2.085254 0.007268 3.666252245 0

Graph: Maximum fitness vs generation.

Graph: Average fitness vs generation.

Source code:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

public class Individual {

public static final int GENE_LENGTH = 10;

private int[] genes;

private double x;

private double y1;

private double y2;

private int rank;

public Individual(boolean initialize) {

genes = new int[GENE_LENGTH];

 if (initialize) {

 generateIndividual();

this.x = calculateX();

 this.y1 = calculateY1();

 this.y2 = calculateY2();

this.rank = 0;

 }

 }

 public Individual(int[] genes) { this.genes = genes;

this.x = calculateX(); this.y1 = calculateY1(); this.y2 =

calculateY2(); this.rank = 0;

 }

 public double getX() { return x;

 }

 public double getY1() { return y1;

 }

 public double getY2() { return y2;

 } public int getRank() { return rank;

 } public int updateRank() { return ++this.rank;

 } public void resetRank() { this.rank = 0;

 }

 public void generateIndividual() { for (int i = 0; i <

GENE_LENGTH; ++i) {

 genes[i] = ThreadLocalRandom.current().nextInt(0, 2);

 }

 }

 public double calculateX() { return

Integer.parseInt(Arrays.toString(genes).replaceAll("[,\\[\\]

]", ""), 2) / 170.5;

 }

 public double calculateY1() { return Math.pow(x - 2, 2);

 } public double calculateY2() { return Math.pow(x - 4, 2);

 } public int[] getGenesBeforeCutPoint(int cutPoint) { int[]

genes = new int[cutPoint];

 System.arraycopy(this.genes, 0, genes, 0, cutPoint); return

genes;

 }

 public int[] getGenesAfterCutPoint(int cutPoint) { int[] genes =

new int[GENE_LENGTH - cutPoint];

 System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);

return genes;

 }

 @Override

 public boolean equals(Object o) { if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Individual that = (Individual) o;

 if (Double.compare(that.y1, y1) != 0) return false; if

(Double.compare(that.y2, y2) != 0) return false; if

(Double.compare(that.x, x) != 0) return false; if (rank != that.rank)

return false; return Arrays.equals(genes, that.genes);

 }

 @Override public int hashCode() { int result; long

temp;

 result = Arrays.hashCode(genes); temp =

Double.doubleToLongBits(y1);

 result = 31 * result + (int) (temp ^ (temp >>> 32)); temp =

Double.doubleToLongBits(y2);

 result = 31 * result + (int) (temp ^ (temp >>> 32)); temp =

Double.doubleToLongBits(x);

 result = 31 * result + (int) (temp ^ (temp >>> 32)); result =

31 * result + rank; return result;

 }

 @Override

 public String toString() { return "Individual{" +

 "genes=" + Arrays.toString(genes) +

 ", x=" + x +

 ", y1=" + y1 +

 ", y2=" + y2 +

 ", rank=" + rank +

 '}';

 } }

 File Population.java:

 import java.util.Arrays;

public class Population {

 public static final int POPULATION_SIZE = 20;

 private Individual[] individuals;

 public Population(boolean initialize) { individuals = new

Individual[POPULATION_SIZE];

 if (initialize) {

 for (int i = 0; i < POPULATION_SIZE; ++i) {

individuals[i] = new Individual(true);

 }

 }

 }

 public Population(Individual[] individuals) { this.individuals =

new Individual[POPULATION_SIZE]; System.arraycopy(individuals, 0,

this.individuals, 0, individuals.length);

 }

 public Individual getIndividual(int index) { return

individuals[index];

 }

 public void replaceIndividual(Individual individual, Individual child) {

for (int i = 0; i < individuals.length; ++i) { if

(individuals[i].equals(individual)) { individuals[i] = child;

break;

 }

 }

 }

 public Individual[] getAllIndividuals() { return individuals;

 }

 public void calculateRankForAllIndividuals() { resetRank();

 for (int i = 0; i < POPULATION_SIZE; ++i) { for (int j =

0; j < POPULATION_SIZE; ++j) { if (i != j &&

(individuals[i].getY1() < individuals[j].getY1() &&

 individuals[i].getY2() < individuals[j].getY2())) {

 individuals[i].updateRank();

 }

 }

 }

 }

 private void resetRank() {

 for (Individual individual: individuals) {

individual.resetRank();

 }

 }

 @Override

 public String toString() { return "Population{\n" +

Arrays.toString(individuals) + "}\n";

 } }

 File GeneticAlgorithm.java:

 import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

 private Population population;

 public GeneticAlgorithm(Population population) { this.population

= population;

 }

 public Population run() {

 Population nextGeneration = new

Population(population.getAllIndividuals());

 nextGeneration.calculateRankForAllIndividuals(); for (int i

= 0; i < Population.POPULATION_SIZE; ++i) {

 Individual[] parents = chooseParents(nextGeneration);

int cutPoint = ThreadLocalRandom.current().nextInt(0,

Individual.GENE_LENGTH);

 Individual[] children = crossover(parents, cutPoint);

 Individual child = getBetterIndividualFromTwoChildren(children);

calculateIndividualRank(child); Individual individual =

findIndividualThatMostSimilarToChild(child);

 if (childBetterThanParent(individual, child)) {

nextGeneration.replaceIndividual(individual, child);

nextGeneration.calculateRankForAllIndividuals();

 }

 }

 population = nextGeneration; return population;

 }

 private Individual[] chooseParents(Population fittestIndividuals) {

return new Individual[]

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

 Population.POPULATION_SIZE)),

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

 Population.POPULATION_SIZE))};

 }

 private Individual[] crossover(Individual[] parents, int curPoint) {

Individual[] descendants = new Individual[2];

 int[] firstDescendantGenes =

concat(parents[0].getGenesBeforeCutPoint(curPoint),

parents[1].getGenesAfterCutPoint(curPoint)); int[]

secondIndividualGenes = concat(parents[0].getGenesAfterCutPoint(curPoint),

 parents[1].getGenesBeforeCutPoint(curPoint));

 descendants[0] = new Individual(firstDescendantGenes);

descendants[1] = new Individual(secondIndividualGenes);

 return descendants;

 }

 private Individual getBetterIndividualFromTwoChildren(Individual[]

children) {

 return calculateIndividualRank(children[0]) >

 calculateIndividualRank(children[1]) ? children[0] :

children[1]; }

 private Individual findIndividualThatMostSimilarToChild(Individual child)

{

 Individual individual = population.getIndividual(0); double

minX = Math.abs(population.getIndividual(0).getX() - child.getX());

 for (int i = 1; i < Population.POPULATION_SIZE; ++i) {

double tempMinX = Math.abs(population.getIndividual(i).getX() -

child.getX());

 if (tempMinX < minX) { minX = tempMinX;

 individual = population.getIndividual(i); }

}

 return individual;

 }

 private boolean childBetterThanParent(Individual individual, Individual

child) {

 return child.getRank() > individual.getRank() || (child.getY1() <

individual.getY1() && child.getY2() < individual.getY2());

 } private int calculateIndividualRank(Individual individual) {

for (int i = 0; i < Population.POPULATION_SIZE; ++i) { if

(individual.getY1() < population.getIndividual(i).getY1() &&

individual.getY2() < population.getIndividual(i).getY2()) {

individual.updateRank();

 } }

 return individual.getRank();

 } private int[] concat(int[] genes1, int[] genes2) { int[]

genes = new int[Individual.GENE_LENGTH];

 System.arraycopy(genes1, 0, genes, 0, genes1.length);

 System.arraycopy(genes2, 0, genes, genes1.length, genes2.length);

 return genes;

 }

}

 File Main.java:

 import java.io.FileWriter; import java.io.IOException;

public class Main {

 public static void main(String[] args) throws IOException {

 FileWriter writer = new FileWriter("output.txt");

 Population population = new Population(true);

 GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

 for (int i = 0; i < 800; ++i) { population =

geneticAlgorithm.run();

System.out.println((i + 1));

writer.write(i + 1) + ":\n");

 for (Individual individual: population.getAllIndividuals()) {

 writer.write(individual.toString() + "\n");

 System.out.println(individual);

 }

 }

 }

}

