Student — Vlad Golovchik (ii-10)

Task 2 (Lucky dog)

We must get dog that get the sausage and eat it). we place dog at (500;500)
coordinates, sausage at (800;800). The best dog which reach sausage we get throuth
the previous algoritm. But we have not binary chromosome, we have 1(go up), O(go
down), 2(go left), 3(go right). Fitness is the number of steps to sausage. The less fithess
the bettet. It is mean that dog is closer to sausage.

Create graph on which display routes 3 random dog.
Pick 3 best dogs from the last population. Create graph with routes.

#include "stdafx.h"
#include <iostream>
#include <fstream>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include <algorithm>
#include <math.h>
using namespace std;

structcoord
{
int X;
int Y;
}s
int stepsToSousage(intdog[1000])
{
coord c;
c.X = 500;
c.Y = 500;
for (int i = @; i<1000; i++)
{
switch (dog[i]) {
case ©O:
c.Y--;
break;
case 1:
C.Y++;
break;
case 2:
c.X--3
break;
case 3:
C.X++;
break;
default:
cout << "Error in \'stepsToSousage\'" << endl;
exit(1);
break;
}
¥

int steps = 0;
steps = abs(c.X - 800) + abs(c.Y - 800);
return steps;

coord getCoord(intdog[1000])

{
coord c;
c.X = 500;
c.Y = 500;
for (int i = 0; i<1000; i++)
{
switch (dog[i]) {
case O:
c.Y--;
break;
case 1:
C.Y++;
break;
case 2:
c.X--3
break;
case 3:
C.X++;
break;
default:
cout << "Error in \'getCoord\
exit(1);
break;
}
}
return c;
}
int main()
{
srand(time(NULL));

ofstream AvrF("e:\\AvrFitness_dogs.txt");
ofstream BestFitnessF("e:\\BestFitness_dogs

ofstream S[5];
ofstream SX[5];
S[@].open("d.txt1X.txt");
S[1].open("d.txt2X.txt");
S[2].open("d.txt3X.txt");

SX[@].open("d.txt1X.txt");
SX[1].open("d.txt2X.txt");
SX[2].open("d.txt3X.txt");

ofstream F[3];
ofstream FX[3];
F[@].open("d.txt1X.txt");
F[1].open("d.txt2X.txt");
F[2].open("d.txt3X.txt");

FX[@].open("d.txt1X.txt");
FX[1].open("d.txt2X.txt");
FX[2].open("d.txt3X.txt");

ofstream Opt("d.txt");

int osob[100][1000];

<< endl;

LExt");

int iter = 0;
double avr = 0;

double numb = 0;

for (int i = @; i<100; i++)
for (int j = 0; j<1000; j++)
{

osob[i][j] = rand() % 4;

avr += osob[i][]];
}
cout << "//M=" << (avr / (100 * 1000)) << endl;
int temp[1000] = { © };
int best[50][1001] = { @ };

do
{
for (int i = @0; i < 100; i++)
{
int min_fitness = i;
for (int j =1 + 1; j < 100; j++)
{
int fitMIN = stepsToSousage(osob[min_fitness]);
int fitJ = stepsToSousage(osob[j]);;
if (fFitJ<fitMIN)min_fitness = j;
}
if (min_fitness != i)
{
for (int k = 0; k<1000; k++)
temp[k] = osob[i][k];
for (int k = 0; k<1000; k++)
osob[i][k] = osob[min_fitness][k];
for (int k = 0; k<1000; k++)
osob[min_fitness][k] = temp[k];
}
}

double AvrFit
int BestFit =
int numOfBest
coord c;

for (int i = ©; i<50; i++)

{

I o 1
..
() (o)
.. ..

c = getCoord(osob[i]);
if (c.X<@ || c.Y<@)continue;
numOfBest++;

for (int j = @; j<1000; j++)
{
best[i][j] = osob[i][j];

}
AvrFit += stepsToSousage(best[i]);

AvrFit = AvrFit / 50;
cout << "//AvrFit = " << AvrFit << endl;

BestFit = stepsToSousage(best[0]);

AvrF << AvrFit;

BestFitnessF << BestFit;

cout << "//BestFit = " << BestFit << endl;
AvrF << '\n';

BestFitnessF << '\n';

if (BestFit == @)break;

int mom = 9;

int dad = 9;
int dog = 0;
int frstChild[1ee0] = { @ };
int ScndChild[1eee] = { @ };

for (int i = @0; i<100; i++)

{
do
{
mom = rand() % numOfBest;
dad = rand() % numOfBest;
} while (mom == dad);
cat = rand() % 1000;
for (int k = 0; k<cat; k++)
{
frstChild[k] = best[mom][k];
ScndChild[k] = best[dad][k];
}
for (int k = cat; k<1000; k++)
{
frstChild[k] = best[dad][k];
ScndChild[k] = best[mom][k];
}
int fitnessl = 0;
int fitness2 = 0;
fitnessl = stepsToSousage(frstChild);
fitness2 = stepsToSousage(ScndChild);
if (fitnessl<fitness2)
{
for (int k = 0; k<1000; k++)
osob[i][k] = frstChild[k];
}
else
{
for (int k = 0; k<1000; k++)
osob[i][k] = ScndChild[k];
}
}
iter++;

} while (iter<100);

for (int s = 0; s<3; s++)

{

coord c;
c.X = 500;
c.Y = 500;
for (int i = @; i<1000; i++)
{
switch (best[s][i]) {
case 0:
c.Y--;
break;
case 1:
C.Y++;
break;
case 2:
c.X--;
break;
case 3:
C.X++;
break;
default:
cout << "Error in \'getCoord\
exit(1);
break;

<< endl;

}
F[s] << c.Y << '"\n’;
FX[s] << c.X << '\n"';

}
}
int total = 800;
for (int i = @; i<150; i++)

{

Opt << (total -= 4) << "\n";
}
return 0;

if (iter == 0)

{
for (int s = 0; s<3; s++)
{
coord c;
c.X = 500;
c.Y = 500;
for (int i = @; i<1000; i++)
{
switch (osob[s][i]) {
case 0:
c.Y--;
break;
case 1:
C.Y++;
break;
case 2:
C.X--;
break;
case 3:
C.X++;
break;
default:

cout << "Error in \'getCoord\ << endl;

exit(1);
break;

}
S[s] << c.Y << "\n";
SX[s] << c.X << "\n";

int isFitnessGood(intosob[50][1000])

{
int count = 0;
for (int i = @; i<50; i++)
{
count = 0;
for (int j = 0; j<1000; j++)
{
count += osob[i][]];
}
if (count == 1000)return i;
}
return -1;
}
Results :
For one point crossover:
Lucky dog -AVERAGE
700
600
500
v,
w400
¥
éﬂ 300
ey
200
100

14 71013161922252831343740434649525558616467 707376 70828588519497

Iteration

Fitness

For uniform crossover:

Fitness

Fitness

00

600

500

400

300

200

100

00
800
00
600
500
400
300
200
100

e00

500
400

300
200

100

Lucky dog - MAX -

PR Y SRR ERREdERRG
Iteration
Lucky dog -AVERAGE
2RCCRREESE3ARERAET
Iteration
Lucky dog - MAX
TR ERREsaggdRagRAEY

Iteration

For one point crossover:

1)one iteration

1000

700

500

200

0

100 200

300 400

500 600 700 Q00

1000

§ER

2)50 iteration

200

100

100

200

400

500

BO0

700

80O

900

1000

— dogl
— dog2
—_ dog3

