Practice (28/10/2016)
Student —Polina Rachkovskaya

Algorithm:

yl = (x-2)"2 and y2 = (x-4)"2
1. Create 20 10-bit binary chromosomes, assuming each chromosome represent
X-cordinate ranges from 0 to 6 with (0000- - -00) and (1111 - -11) being corresponding
to 0 and 6, respectively.
2. Calculate y 1 and y 2 for each of 20 x's represented by these 20 chromosomes.
3. Select individuals uniformly from population.
4. Perform crossover and mutation to create a child.
5. Calculate the rank of the new child.
6. Find the individual in the entire population that is most similar to the child. Replace that individual with
the new child if the child's ranking is better, or if the child dominates it.
7. Update the ranking of the population if the child has been inserted.

8. Perform steps 2-6 according to the population size.

Results:

Fitness vs Generation

0 100 200 300 400 500 600

max average

Iteration 1

Ne | Chromosome X Y1 Y2 Rank
1 |0111110111 | 2,950147 0,902779 1,102192 | 8
2 |1001111110 | 3,741935 3,034339 0,066597 |0
3 | 1101111110 | 5,243402 10,51965 1,546048 |1
4 | 1000000100 | 3,026393 1,053483 0,947911 |8
5 | 1011101111 | 4,404692 5,782544 0,163776 |3
6 | 1101111101 | 5,237537 10,48164 1,531497 |2
7 | 0000110101 | 0,31085 2,853226 13,60982 |3
8 | 0000000100 | 0,02346 3,906709 15,81287 | 0
9 |0111101011 | 2,879765 0,773987 1,254926 | 8
10 | 0110100110 | 2,475073 0,225695 2,325401 |5
11 | 0000011011 | 0,158358 3,391646 14,75822 |1
12 | 1010001101 | 3,829912 3,348578 0,02893 |6
13 | 0111000101 | 2,656891 0,431506 1,80394 |5
14 | 0000101101 | 0,26393 3,01394 13,95822 |2
15 | 0111000101 | 2,656891 0,431506 1,80394 |5
16 | 0111101000 | 2,86217 0,743337 1,294657 | 8
17 | 1000100100 | 3,214076 1,473981 0,617676 | 8
18 | 1011000000 | 4,129032 4,532778 0,016649 | 4
19 | 0001011110 | 0,55132 2,098675 11,8934 |4
20 | 0100101011 | 1,753666 0,060681 5,046018 | 5

AT

Iteration 125

Ne | Chromosome X Y1 Y2 Rank
1 | 1100001011 4.567784 6.593515 | 0.322378671 | 3
2 | 0111001000 2.673353 0.453404 | 1.759992263 | 5
3 | 0111000001 2.634562 0.402669 | 1.864420932 | 5
4 |0111101000 2.864222 0.74688 | 1.289991665 | 5
5 | 1101111110 5.244221 10.52497 | 1.548085897 | 1
6 | 1110010101 5.375664 11.39511 | 1.892451441 | O
7 | 0011100101 1.345692 0.428119 | 7.045350959 | 3
8 | 0100110000 1.783452 0.046893 | 4.913085036 | 4
9 | 1000100111 3.234525 1.524052 | 0.585951976 | 4
10 | 1001100000 3.567444 2.456881 | 0.187104693 | 5
11 | 1001110101 3.690034 2.856215 | 0.096078921 | 4
12 | 0100111111 1.873324 0.016047 | 4.522750809 | 4
13 | 0110100011 2.456225 0.208141 | 2.383241251 | 3
14 | 1010011100 3.918843 3.681958 | 0.006586459 | 5
15 | 1011111011 4.475355 6.127382 | 0.225962376 | 4
16 | 0001111001 0.712399 1.657917 | 10.80832099 | 0
17 | 1101000001 4.883211 8.312906 | 0.780061671 | 2
18 | 0010011000 0.891336 1.229137 | 9.663794974 | 0
19 | 0010011011 0.910013 1.188072 | 9.54801966 | 2
20 | 0111110000 2.910453 0.828925 | 1.187112665 | 5

AT

Iteration 250

Ne | Chromosome X Y1 Y2 Rank
1 | 1100110000 4.787668 7.771093 | 0.620420878 | 0
2 | 0100110001 1.786554 0.045559 | 4.899343195 | 4
3 | 1011010110 4.255532 5.087425 | 0.065296603 | 3
4 | 0110100011 2.456789 0.208656 | 2.381500191 | 4
5 | 0001111101 0.734578 1.601293 | 10.66298084 | 0O
6 | 1101000111 4.922345 8.5401 | 0.850720299 | 0
7 | 0111110110 2.944333 0.891765 | 1.114432815 | 1
8 | 0011000011 1.145678 0.729866 | 8.14715408 | 1
9 | 1000101011 3.255432 1.57611 | 0.554381507 | 3
10 | 1011110100 4.435556 5.931933 | 0.189709029 | 3
11 | 0011010011 1.238635 0.579677 | 7.625136663 | 2
12 | 1011111011 4.476889 6.134979 | 0.227423118 | 1
13 | 1001010100 3.496784 2.240362 | 0.253226343 | 1
14 | 0011111101 1.486755 0.26342 | 6.31640043 | 3
15 | 1010011010 3.903332 3.622673 | 0.009344702 | 3
16 | 0111001011 2.689644 0.475609 | 1.717032847 | 3
17 | 1000011000 3.144432 1.309725 | 0.731996603 | 2
18 | 0111010010 2.733422 0.537908 | 1.60421983 | 3
19 | 0101000000 1.874432 0.015767 | 4.518039323 | 5
20 | 1001010111 3.514433 2.293507 | 0.235775311 | 1

AT

Iteration 375

Ne | Chromosome X Y1 Y2 Rank
1 | 1011111001 4.463433 6.068502 | 0.214770145 | 1
2 | 1000000101 3.032211 1.06546 | 0.936615549 | 1
3 | 1000100000 3.189224 1.414254 | 0.657357722 | 1
4 | 1001011001 3.524452 2.323954 0.2261459 | 1
5 | 0011110101 1.435678 0.318459 | 6.57574732 | 0
6 | 1100001110 4.588224 6.698903 | 0.346007474 | O
7 | 0100001100 1.573889 0.181571 | 5.886014584 | 0
8 | 1011010110 4.255368 5.086685 | 0.065212815 | 2
9 | 0100011001 1.645632 0.125577 | 5.543048679 | 2
10 | 0101010101 2.000123 1.51E-08 | 3.999508015 | 0
11 | 0101101110 2.144326 0.02083 | 3.443525994 | 3
12 | 0101111111 2.245821 0.060428 | 3.077143964 | 3
13 | 1001100101 3.596622 2.549202 | 0.162713811 | 2
14 | 1001010011 3.489211 2.217749 | 0.260905403 | 1
15 | 0110101001 2.495523 0.245543 | 2.263451044 | 2
16 | 0110101110 2.522368 0.272868 | 2.183396327 | 2
17 | 0111010101 2.752219 0.565833 | 1.556957424 | 1
18 | 1010100010 3.954112 3.818554 | 0.002105709 | 3
19 | 0111111000 2.955312 0.912621 | 1.091373017 | 1
20 | 1010110011 4.051331 4.207959 | 0.002634872 | 3

Iteration 500

Ne | Chromosome X Y1 Y2 Rank
1 |o0111110111 2.950147 0.902779 | 1.102192104 | O
2 | 1001111110 3.741935 3.034339 | 0.066597294 | 0
3 | 1000000100 3.026393 1.053483 | 0.947910665 | O
4 | 0111101011 2.879765 0.773987 | 1.254925568 | O
5 |0110100110 2.475073 0.225695 | 2.325401398 | 0
6 | 0111000101 2.656891 0.431506 | 1.803940455 | 0
7 | 0111101000 2.86217 0.743337 | 1.294656909 | 0
8 | 1000100100 3.214076 1.473981 | 0.617676147 | O
9 | 1010001101 3.829912 3.348578 | 0.02892992 | 0O
10 | 1010101101 4.017595 4.070691 | 0.000309595 | 0
11 | 1010101010 4.005865 4.023495 | 0.000003439 | 2
12 | 0110100001 2.445748 0.198691 | 2.415699899 | 0
13 | 1010100101 3.970674 3.883558 | 0.000859986 | O
14 | 0110100001 2.445748 0.198691 | 2.415699899 | 0
15 | 0111110111 2.950147 0.902779 | 1.102192104 | 0
16 | 1010101101 4.017595 4.070691 | 0.000309595 | 0
17 | 1010001101 3.829912 3.348578 | 0.02892992 | 0
18 | 0110100001 2.445748 0.198691 | 2.415699899 | 0
19 | 0101011010 2.005865 3.976541 0.0000341 | 2
20 | 1001011100 3.542522 2.379374 | 0.209286126 | O

AT

Code:

public static final int GENE LENGTH = 10;
private int[] genes;private double x,vyl,vy2;
private int rank;

public Individual (boolean initialize) {

genes = new int[GENE LENGTH];

if (initialize) {

generateIndividual () ;this.x = calculateX();
this.yl = calculateYl();this.y2 = calculateY2();
this.rank = 0; }}

public Individual (int[] genes) {

this.genes = genes; this.x = calculateX();this.yl = calculateYl();
this.y2 = calculate¥Y2();this.rank = 0; }

public double getX () {return x; }

public double getYl() {return vyl; }

public double getY¥2() {return vy2; }

public int getRank () {return rank; }

public int updateRank () {return ++this.rank; }

public void resetRank () {this.rank = 0; }

public void generatelIndividual () {

for (int i = 0; i < GENE LENGTH; ++i) {

genes[i] = ThreadLocalRandom.current () .nextInt (0, 2);} }

public double calculateX() {

return Integer.parselnt (Arrays.toString(genes).replaceAll ("[,\\[\\] 1",
"")y, 2) / 170.5; }

public double calculateYl() {return Math.pow(x - 2, 2); }
public double calculateY2 () {return Math.pow(x - 4, 2); }
public int[] getGenesBeforeCutPoint (int cutPoint) {

int[] genes = new int[cutPoint];

System.arraycopy (this.genes, 0, genes, 0, cutPoint);

return genes; }

public int[] getGenesAfterCutPoint (int cutPoint) {

int[] genes = new int[GENE LENGTH - cutPoint];

System.arraycopy (this.genes, cutPoint, genes, 0, genes.length);
return genes; }

public static final int POPULATION SIZE = 20;

private Individual[] individuals;

public Population (boolean initialize) { individuals = new
Individual[POPULATION_SIZE];

if (initialize) {

for (int i = 0; i < POPULATION SIZE; ++i) {

individuals[i] = new Individual (true); }}}

public Population (Individual[] individuals) {

this.individuals = new Individual [POPULATION SIZE];
System.arraycopy (individuals, 0, this.individuals, O,
individuals.length); }

public Individual getIndividual (int index) {return individuals[index];}
public void replaceIndividual (Individual individual, Individual child) {
for (int i = 0; i1 < individuals.length; ++i) {

if (individuals[i].equals (individual)) {

individuals[i] = child; break; }}}

public Individual[] getAllIndividuals() {return individuals; }
public void calculateRankForAllIndividuals () {resetRank();

for (int 1 = 0; i < POPULATION STIZE; ++1) |
for (int j = 0; j < POPULATION SIZE; ++3) {
if (i !'= jJ && (individuals[i].getY1l() < individuals[]j].getY1l () &&
individuals[i] .getY2 () < individuals[j].getY2())) {
individuals[i] .updateRank ();}}}}
private void resetRank() {

for (Individual individual: individuals) {

individual.resetRank();}}

private Population population;

public GeneticAlgorithm (Population population) {this.population =
population; }

public Population run() {Population nextGeneration = new

Population (population.getAllIndividuals());
nextGeneration.calculateRankForAllIndividuals () ;

for (int 1 = 0; 1 < Population.POPULATION SIZE; ++i) {

Individual[] parents = chooseParents (nextGeneration);

int cutPoint = ThreadLocalRandom.current () .nextInt (0,
Individual.GENE_LENGTH);

Individual[] children = crossover (parents, cutPoint);

Individual child = getBetterIndividualFromTwoChildren (children);
calculateIndividualRank (child) ;

Individual individual = findIndividualThatMostSimilarToChild (child):;
if (childBetterThanParent (individual, child)) {
nextGeneration.replacelndividual (individual, child);
nextGeneration.calculateRankForAllIndividuals();}}

population = nextGeneration; return population; }

private Individual[] chooseParents (Population fittestIndividuals) {
return new Individuall]

{fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,
Population.POPULATION_SIZE)),

fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,
Population.POPULATION SIZE))}; }

private Individual[] crossover (Individual[] parents, int curPoint) {
Individual[] descendants = new Individuall[2];
int[] firstDescendantGenes =

concat (parents[0] .getGenesBeforeCutPoint (curPoint),

parents[1l] .getGenesAfterCutPoint (curPoint));

int[] secondIndividualGenes =

concat (parents[0] .getGenesAfterCutPoint (curPoint),

parents[1l] .getGenesBeforeCutPoint (curPoint)) ;

descendants[0] = new Individual (firstDescendantGenes)
descendants[1l] = new Individual (secondIndividualGenes) ;

return descendants;}

private Individual getBetterIndividualFromTwoChildren (Individual/[]
children) {return calculateIndividualRank(children[O0]) >
calculateIndividualRank (children[1l]) ? children[0O] : children[1]; }
private Individual findIndividualThatMostSimilarToChild (Individual
child) {Individual individual = population.getIndividual (0);

double minX = Math.abs (population.getIndividual (0) .getX () -
child.getX());for (int i = 1; i < Population.POPULATION_SIZE; ++1) |
double tempMinX = Math.abs (population.getIndividual (i) .getX () -
child.getX());if (tempMinX < minX) {minX = tempMinX; individual =

population.getIndividual (i); }}return individual; }

private boolean childBetterThanParent (Individual individual, Individual
child) {return child.getRank () > individual.getRank () || (child.getY1l ()
< individual.getY¥1l () && child.get¥2 () < individual.getY2()):;}

private int calculateIndividualRank (Individual individual) { for
(int i = 0; i < Population.POPULATION SIZE; ++i) { if
(individual.getY1l () < population.getIndividual (i) .get¥1l () &&
individual.getY¥2 () < population.getIndividual (i) .get¥2()) {
individual.updateRank () ;}}return individual.getRank () ;}

private int[] concat(int[] genesl, int[] genes2?2) {int[] genes = new

int[Individual.GENE LENGTH];

System.arraycopy (genesl, 0, genes, 0, genesl.length);
System.arraycopy (genes2, 0, genes, genesl.length, genesZ2.length);
return genes; }}

