18

16

14

12

10

Contemporary Intelligent Information Techniques (CIIT)

Practice #5 (28/10/2016)

Siarhei Savaniuk (Al-10)

LabWork #5 Parate Optimum Solution- Dominate & Rank

First
0000101011 x=0.2521 y1=3.0548 y2=14.0460 rank=1
0001100101 x=0.5923 y1=1.9814 y2=11.6119 rank=2
1110000010 X=5.2668 y1=10.6723 y2=1.6049 rank=1
0010111110 x=1.1143 y1=0.7843 y2=8.3268 rank=3
0000000110 x=0.0351 y1=3.8604 y2=15.7197 rank=0
1101100101 x=5.0967 y1=9.5900 y2=1.2029 rank=2
1000001010 x=3.0615 y1=1.1269 y2=0.8806 rank=6
1101001000 x=4.9266 y1=8.5654 y2=0.8587 rank=3
1010010110 x=3.8826 y1=3.5445 y2=0.0137 rank=9
1111000000 x=5.6304 y1=13.1805 y2=2.6585 rank=0
1100000101 x=4.5337 y1=6.4197 y2=0.2848 rank=4
1011000011 x=4.1466 y1=4.6080 y2=0.0214 rank=7
1000101111 x=3.2785 y1=1.6347 y2=0.5204 rank=7
1011100101 x=4.3460 y1=5.5039 y2=0.1197 rank=5
0110010010 x=2.3577 y1=0.1280 y2=2.6969 rank=5
1011001011 x=4.1935 y1=4.8116 y2=0.0374 rank=6
0101101100 x=2.1348 y1=0.0181 y2=3.4786 rank=5
1001010010 x=3.4838 y1=2.2018 y2=0.2663 rank=7
0100000101 x=1.5307 y1=0.2201 y2=6.0969 rank=4
0111000000 X=2.6275 y1=0.3938 y2=1.8835 rank=5
First generation
y=(x-2)"2

y=(x-4)"2

18

16

14

12

10

Intermediate 1

0100010111 x=1.6363 y1=0.1322 y2=5.5867 rank=1
0100101101 x=1.7653 y1=0.0550 y2=4.9934 =2
1010110100 x=4.0586 y1=4.2380 y2=0.0034 rank=1
0100111001 x=1.8357 y1=0.0269 y2=4.6838 rank=3
0100001101 x=1.5777 y1=0.1783 y2=5.8674 rank=0
1010101010 X=4.0 y1=4.0 y2=0.0 rank=2
0110000001 x=2.2580 y1=0.0665 y2=3.0343 rank=2
1010100111 x=3.9824 y1=3.9299 y2=3.0959 rank=2
1001110101 x=3.6891 y1=2.8532 y2=0.0966 =0
1010111111 x=4.1231 y1=4.5078 y2=0.0151 rank=0
1010011011 x=3.9120 y1=3.6558 y2=0.0077 rank=1
1001111010 x=3.7184 y1=2.9531 y2=0.0792 rank=0
1000010011 x=3.1143 y1=1.2418 y2=0.7843 rank=0
1010010100 x=3.8709 y1=3.5005 y2=0.0166 rank=0
0101101001 x=2.1173 y1=0.0137 y2=3.5445 rank=4
1010001011 x=3.8181 y1=3.3057 y2=0.0330 =0
0101010100 x=1.9941 y1=3.4399 y2=4.0234 rank=5
1001101010 x=3.6246 y1=2.6394 y2=0.1409 rank=0
0101000111 x=1.9178 y1=0.0067 y2=4.3351 rank=4
0101111010 x=2.2170 y1=0.0470 y2=3.1790 rank=3
Intermediate 1 generation
—0— y=(x-2)"2

y=(x-4)"2

18

16

14

12

10

Intermediate 2
0100111101 x=1.8592 y1=0.0198 y2=4.5828 rank=1
0101000111 x=1.9178 y1=0.0067 y2=4.3351 rank=2
1010101010 X=4.0 y1=4.0 y2=0.0 rank=1
0101010011 x=1.9882 y1=1.3759 y2=4.0470 rank=3
0100110101 x=1.8123 y1=0.0352 y2=4.7859 rank=0
1010101001 x=3.9941 y1=3.9765 y2=3.4399 rank=1
0101110101 x=2.1876 y1=0.0352 y2=3.2844 rank=1
1010100110 x=3.9765 y1=3.9067 y2=5.5039 rank=0
1001110101 x=3.6891 y1=2.8532 y2=0.0966 rank=0
1010101100 x=4.0117 y1=4.0470 y2=1.3759 rank=0
1010011101 x=3.9237 y1=3.7008 y2=0.0058 rank=0
1001111010 x=3.7184 y1=2.9531 y2=0.0792 rank=0
1000010011 x=3.1143 y1=1.2418 y2=0.7843 rank=0
1010010100 x=3.8709 y1=3.5005 y2=0.0166 rank=0
0101100100 x=2.0879 y1=0.0077 y2=3.6558 rank=2
1010001011 x=3.8181 y1=3.3057 y2=0.0330 rank=0
0101011001 x=2.0234 y1=5.5039 y2=3.9067 rank=3
1001101010 x=3.6246 y1=2.6394 y2=0.1409 rank=0
0101010101 x=2.0 y1=0.0 y2=4.0 rank=4
0101101010 x=2.1231 y1=0.0151 y2=3.5225 rank=2
Intermediate 2 generation
—0— y=(x-2)"2

y=(x-4)"2

18

16

14

12

10

Last
0101010011 X=2.9882 y1=1.3759 y2=4.0470 rank=1
0101010100 x=2.9941 y1=3.4399 y2=4.0234 rank=2
1010101010 x=4.0 y1=4.0 y2=0.0 rank=1
0101010101 x=2.0 y1=0.0 y2=4.0 rank=3
0101010001 x=2.9765 y1=5.5039 y2=4.094 rank=0
1010101001 x=3.9941 y1=3.9765 y2=3.4399 rank=1
0101100010 x=3.0762 y1=0.0058 y2=3.7008 rank=0
1010100110 x=2.9765 y1=3.9067 y2=5.5039 rank=0
1001110101 x=2.6891 y1=2.8532 y2=0.0966 rank=0
1010101100 x=4.0117 y1=4.0470 y2=1.3759 rank=0
1010011101 x=2.9237 y1=3.7008 y2=0.0058 rank=0
1001111010 x=2.7184 y1=2.9531 y2=0.0792 rank=0
1000010011 x=2.1143 y1=1.2418 y2=0.7843 rank=0
1010010100 x=2.8709 y1=3.5005 y2=0.0166 rank=0
0101011000 x=3.0175 y1=3.0959 y2=3.9299 rank=1
1010001011 x=3.8181 y1=3.3057 y2=0.0330 rank=0
0101010111 x=3.0117 y1=1.3759 y2=3.9532 rank=1
1001101010 x=3.6246 y1=2.6394 y2=0.1409 rank=0
0101010110 x=3.0058 y1=3.4399 y2=3.9765 rank=2
0101011110 x=2.0527 y1=0.0027 y2=3.7916 rank=0
Final generation
—0—y=(x-2)"2

y=(x-4)"2

X

Max fitness vs generation

10

fitness
(9]

o

100 200 300 400 500 600 700 800

generation

Average fitness vs generation

average fitness
= N
[[0 N [95]

o
U

o

0 100 200 300 400 500 600 700 800

generation

Source code (written in Java)
File Individual.java:
import java.util.Arrays;
import java.util.concurrent.ThreadLocalRandom;

public class Individual {
public static final int GENE LENGTH = 10;

private int[] genes;
private double x;
private double yl;
private double y2;
private int rank;

public Individual (boolean initialize) {
genes = new int[GENE LENGTH] ;

if (initialize) {
generateIndividual () ;
this.x = calculateX();
this.yl = calculateYl ()
this.y2 = calculateY2()
this.rank = 0;

’
’

}

public Individual (int[] genes) {
this.genes = genes;
this.x = calculateX();
this.yl calculateY1l();
this.y2 = calculateY2();
this.rank = 0;

}

public double getX() {
return x;

}

public double getYl () {
return yl;

}

public double getY2 () {
return y2;

}

public int getRank() {
return rank;

}

public int updateRank () {
return ++this.rank;

}

public void resetRank () {
this.rank = 0;

}

public void generatelIndividual () {
for (int i = 0; i < GENE_LENGTH; ++i) {
genes[i] = ThreadLocalRandom.current() .nextInt (0, 2);

}

public double calculateX() {

return Integer.parselInt (Arrays.toString(genes).replaceAll ("[,\\[\\]
"ny, 2) / 170.5;
}

public double calculateYl () {
return Math.pow(x - 2, 2);
}

public double calculateY2 () {
return Math.pow(x - 4, 2);
}

public int[] getGenesBeforeCutPoint (int cutPoint) {
int[] genes = new int[cutPoint];
System.arraycopy (this.genes, 0, genes, 0, cutPoint);
return genes;

public int[] getGenesAfterCutPoint (int cutPoint) {
int[] genes = new int[GENE LENGTH - cutPoint];
System.arraycopy (this.genes, cutPoint, genes, 0, genes.length);
return genes;

}

@QOverride
public boolean equals (Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Individual that = (Individual) o;
if (Double.compare(that.yl, yl) != 0) return false;
if (Double.compare(that.y2, y2) != 0) return false;
if (Double.compare(that.x, x) != 0) return false;
if (rank != that.rank) return false;

return Arrays.equals(genes, that.genes);

}

@QOverride
public int hashCode () {
int result;
long temp;
result = Arrays.hashCode (genes) ;
temp = Double.doubleToLongBits(yl);
result = 31 * result + (int) (temp ©~ (temp >>> 32));
temp = Double.doubleToLongBits(y2);
result = 31 * result + (int) (temp ©~ (temp >>> 32));
temp = Double.doubleToLongBits (x) ;
result = 31 * result + (int) (temp * (temp >>> 32));
result = 31 * result + rank;
return result;

}

@Override
public String toString() {
return "Individual{" +

"genes=" + Arrays.toString(genes) +
", x=" + x +
",oyl=" o4 oyl o+
", y2=" + y2 +
", rank=" + rank +

4
'}';

File Population.java:
import java.util.Arrays;

public class Population ({
public static final int POPULATION_ SIZE = 20;
private Individual[] individuals;

public Population (boolean initialize) {
individuals = new Individual [POPULATION SIZE];

if (initialize) {
for (int i = 0; i < POPULATION SIZE; ++i) ({
individuals[i] = new Individual (true);

public Population (Individual[] individuals) {
this.individuals = new Individual [POPULATION SIZE];
System.arraycopy(individuals, 0, this.individuals, O,

individuals.length) ;
}

public Individual getIndividual (int index) {
return individuals[index];

}

public void replacelIndividual (Individual individual,
i < individuals.length; ++i) {

Individual child) {

for (int 1 = 0;
if (individuals[i].equals(individual)) {
individuals[i] = child;
break;
}
}
}
public Individual[] getAllIndividuals() {

return individuals;

}

public void calculateRankForAllIndividuals() {

resetRank () ;
for (int 1 = 0; i < POPULATION SIZE; ++i) {

for (int j = 0; j < POPULATION SIZE; ++j) {
if (i != j && (individuals[i].getYl() <

individuals[]j].getY1l () &&
individuals[i].getY2 () <

individuals([j].getY2())) {
individuals[i] .updateRank() ;

}

}

private void resetRank() {
for (Individual individual:
individual.resetRank () ;

individuals) {

}

@Override

public String toString() {
return "Population{\n" + Arrays.toString(individuals) + "}\n";

}

File GeneticAlgorithm.java:
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

private Population population;

public GeneticAlgorithm (Population population) {

this.population = population;
}

public Population run() {
Population nextGeneration = new

Population (population.getAllIndividuals());
nextGeneration.calculateRankForAllIndividuals () ;

for (int 1 = 0; i < Population.POPULATION SIZE; ++i) {

Individual[] parents = chooseParents (nextGeneration);

int cutPoint = ThreadLocalRandom.current () .nextInt (0,
Individual.GENE LENGTH) ;

Individual[] children = crossover (parents, cutPoint);

Individual child = getBetterIndividualFromTwoChildren (children);

calculateIndividualRank (child) ;

Individual individual =
findIndividualThatMostSimilarToChild (child) ;

if (childBetterThanParent (individual, child)) {
nextGeneration.replaceIndividual (individual, child);
nextGeneration.calculateRankForAllIndividuals () ;

}

population = nextGeneration;
return population;

}

private Individual[] chooseParents (Population fittestIndividuals) {
return new Individual []
{fittestIndividuals.getIndividual (ThreadLocalRandom. current () .nextInt (0,
Population.POPULATION SIZE)),

fittestIndividuals.getIndividual (ThreadLocalRandom.current () .nextInt (0,
Population.POPULATION_SIZE))};
}

private Individual[] crossover (Individual[] parents, int curPoint) {
Individual[] descendants = new Individual[2];

int[] firstDescendantGenes =
concat (parents[0] .getGenesBeforeCutPoint (curPoint),
parents[1l].getGenesAfterCutPoint (curPoint));
int[] secondIndividualGenes =
concat (parents[0] .getGenesAfterCutPoint (curPoint),
parents[l].getGenesBeforeCutPoint (curPoint)) ;

descendants[0] = new Individual (firstDescendantGenes);
descendants[l] = new Individual (secondIndividualGenes) ;

return descendants;

}

private Individual getBetterIndividualFromTwoChildren (Individuall]
children) {
return calculateIndividualRank (children([0]) >
calculateIndividualRank (children[1]) ? children[0] : children[1];
}

private Individual findIndividualThatMostSimilarToChild (Individual child)

Individual individual = population.getIndividual (0);
double minX = Math.abs (population.getIndividual (0) .getX () -
child.getX());
for (int i = 1; 1 < Population.POPULATION SIZE; ++i) {
double tempMinX = Math.abs (population.getIndividual (i) .getX () -
child.getX());
if (tempMinX < minX) {
minX = tempMinX;
individual = population.getIndividual (i) ;
}
}

return individual;

}

private boolean childBetterThanParent (Individual individual, Individual

child) {
return child.getRank () > individual.getRank () || (child.getY1l() <
individual.getY1l () && child.getY2() < individual.getY2());
}

private int calculateIndividualRank (Individual individual) {
for (int 1 = 0; i < Population.POPULATION SIZE; ++i)
if (individual.getYl () < population.getIndividual (i) .get¥1l () &&
individual.getY2 () < population.getIndividual (i) .getY2()) {
individual.updateRank () ;
}
}

return individual.getRank();

}

private int[] concat (int[] genesl, int[] genes2) {
int[] genes = new int[Individual.GENE_ LENGTH];

System.arraycopy (genesl, 0, genes, 0, genesl.length);
System.arraycopy (genes2, 0, genes, genesl.length, genes2.length);

return genes;

File Main.java:
import java.io.FileWriter;
import java.io.IOException;

/**
* 10 ren 20 xpomocomMm; x=0:6 (x=2) "2 (x-4)"2
*/
public class Main {
public static void main (String[] args) throws IOException {
FileWriter writer = new FileWriter ("output.txt");
Population population = new Population (true);
GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

for (int 1 = 0; 1 < 1000; ++1i) {
population = geneticAlgorithm.run();
System.out.println ("ITERATION #" + (i + 1));
writer.write ("ITERATION #" + (i + 1) + ":\n");
for (Individual individual: population.getAllIndividuals()) {
writer.write (individual.toString() + "\n");
System.out.println (individual) ;

