
Contemporary Intelligent Information Techniques (CIIT)

Practice #5 (28/10/2016)

Siarhei Savaniuk (AI-10)

LabWork #5 Parate Optimum Solution- Dominate & Rank

First
0000101011 x=0.2521 y1=3.0548 y2=14.0460 rank=1

0001100101 x=0.5923 y1=1.9814 y2=11.6119 rank=2

1110000010 x=5.2668 y1=10.6723 y2=1.6049 rank=1

0010111110 x=1.1143 y1=0.7843 y2=8.3268 rank=3

0000000110 x=0.0351 y1=3.8604 y2=15.7197 rank=0

1101100101 x=5.0967 y1=9.5900 y2=1.2029 rank=2

1000001010 x=3.0615 y1=1.1269 y2=0.8806 rank=6

1101001000 x=4.9266 y1=8.5654 y2=0.8587 rank=3

1010010110 x=3.8826 y1=3.5445 y2=0.0137 rank=9

1111000000 x=5.6304 y1=13.1805 y2=2.6585 rank=0

1100000101 x=4.5337 y1=6.4197 y2=0.2848 rank=4

1011000011 x=4.1466 y1=4.6080 y2=0.0214 rank=7

1000101111 x=3.2785 y1=1.6347 y2=0.5204 rank=7

1011100101 x=4.3460 y1=5.5039 y2=0.1197 rank=5

0110010010 x=2.3577 y1=0.1280 y2=2.6969 rank=5

1011001011 x=4.1935 y1=4.8116 y2=0.0374 rank=6

0101101100 x=2.1348 y1=0.0181 y2=3.4786 rank=5

1001010010 x=3.4838 y1=2.2018 y2=0.2663 rank=7

0100000101 x=1.5307 y1=0.2201 y2=6.0969 rank=4

0111000000 x=2.6275 y1=0.3938 y2=1.8835 rank=5

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

First generation

y=(x-2)^2

y=(x-4)^2

x

Intermediate 1
0100010111 x=1.6363 y1=0.1322 y2=5.5867 rank=1

0100101101 x=1.7653 y1=0.0550 y2=4.9934 rank=2

1010110100 x=4.0586 y1=4.2380 y2=0.0034 rank=1

0100111001 x=1.8357 y1=0.0269 y2=4.6838 rank=3

0100001101 x=1.5777 y1=0.1783 y2=5.8674 rank=0

1010101010 x=4.0 y1=4.0 y2=0.0 rank=2

0110000001 x=2.2580 y1=0.0665 y2=3.0343 rank=2

1010100111 x=3.9824 y1=3.9299 y2=3.0959 rank=2

1001110101 x=3.6891 y1=2.8532 y2=0.0966 rank=0

1010111111 x=4.1231 y1=4.5078 y2=0.0151 rank=0

1010011011 x=3.9120 y1=3.6558 y2=0.0077 rank=1

1001111010 x=3.7184 y1=2.9531 y2=0.0792 rank=0

1000010011 x=3.1143 y1=1.2418 y2=0.7843 rank=0

1010010100 x=3.8709 y1=3.5005 y2=0.0166 rank=0

0101101001 x=2.1173 y1=0.0137 y2=3.5445 rank=4

1010001011 x=3.8181 y1=3.3057 y2=0.0330 rank=0

0101010100 x=1.9941 y1=3.4399 y2=4.0234 rank=5

1001101010 x=3.6246 y1=2.6394 y2=0.1409 rank=0

0101000111 x=1.9178 y1=0.0067 y2=4.3351 rank=4

0101111010 x=2.2170 y1=0.0470 y2=3.1790 rank=3

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

Intermediate 1 generation

y=(x-2)^2

y=(x-4)^2

x

Intermediate 2
0100111101 x=1.8592 y1=0.0198 y2=4.5828 rank=1

0101000111 x=1.9178 y1=0.0067 y2=4.3351 rank=2

1010101010 x=4.0 y1=4.0 y2=0.0 rank=1

0101010011 x=1.9882 y1=1.3759 y2=4.0470 rank=3

0100110101 x=1.8123 y1=0.0352 y2=4.7859 rank=0

1010101001 x=3.9941 y1=3.9765 y2=3.4399 rank=1

0101110101 x=2.1876 y1=0.0352 y2=3.2844 rank=1

1010100110 x=3.9765 y1=3.9067 y2=5.5039 rank=0

1001110101 x=3.6891 y1=2.8532 y2=0.0966 rank=0

1010101100 x=4.0117 y1=4.0470 y2=1.3759 rank=0

1010011101 x=3.9237 y1=3.7008 y2=0.0058 rank=0

1001111010 x=3.7184 y1=2.9531 y2=0.0792 rank=0

1000010011 x=3.1143 y1=1.2418 y2=0.7843 rank=0

1010010100 x=3.8709 y1=3.5005 y2=0.0166 rank=0

0101100100 x=2.0879 y1=0.0077 y2=3.6558 rank=2

1010001011 x=3.8181 y1=3.3057 y2=0.0330 rank=0

0101011001 x=2.0234 y1=5.5039 y2=3.9067 rank=3

1001101010 x=3.6246 y1=2.6394 y2=0.1409 rank=0

0101010101 x=2.0 y1=0.0 y2=4.0 rank=4

0101101010 x=2.1231 y1=0.0151 y2=3.5225 rank=2

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

Intermediate 2 generation

y=(x-2)^2

y=(x-4)^2

x

Last
0101010011 x=2.9882 y1=1.3759 y2=4.0470 rank=1

0101010100 x=2.9941 y1=3.4399 y2=4.0234 rank=2

1010101010 x=4.0 y1=4.0 y2=0.0 rank=1

0101010101 x=2.0 y1=0.0 y2=4.0 rank=3

0101010001 x=2.9765 y1=5.5039 y2=4.094 rank=0

1010101001 x=3.9941 y1=3.9765 y2=3.4399 rank=1

0101100010 x=3.0762 y1=0.0058 y2=3.7008 rank=0

1010100110 x=2.9765 y1=3.9067 y2=5.5039 rank=0

1001110101 x=2.6891 y1=2.8532 y2=0.0966 rank=0

1010101100 x=4.0117 y1=4.0470 y2=1.3759 rank=0

1010011101 x=2.9237 y1=3.7008 y2=0.0058 rank=0

1001111010 x=2.7184 y1=2.9531 y2=0.0792 rank=0

1000010011 x=2.1143 y1=1.2418 y2=0.7843 rank=0

1010010100 x=2.8709 y1=3.5005 y2=0.0166 rank=0

0101011000 x=3.0175 y1=3.0959 y2=3.9299 rank=1

1010001011 x=3.8181 y1=3.3057 y2=0.0330 rank=0

0101010111 x=3.0117 y1=1.3759 y2=3.9532 rank=1

1001101010 x=3.6246 y1=2.6394 y2=0.1409 rank=0

0101010110 x=3.0058 y1=3.4399 y2=3.9765 rank=2

0101011110 x=2.0527 y1=0.0027 y2=3.7916 rank=0

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6

Final generation

y=(x-2)^2

y=(x-4)^2

x

Source code (written in Java)
File Individual.java:
import java.util.Arrays;

import java.util.concurrent.ThreadLocalRandom;

public class Individual {

 public static final int GENE_LENGTH = 10;

 private int[] genes;

 private double x;

 private double y1;

 private double y2;

 private int rank;

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800

fi
tn

es
s

generation

Max fitness vs generation

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 100 200 300 400 500 600 700 800

av
er

ag
e

fi
tn

es
s

generation

Average fitness vs generation

 public Individual(boolean initialize) {

 genes = new int[GENE_LENGTH];

 if (initialize) {

 generateIndividual();

 this.x = calculateX();

 this.y1 = calculateY1();

 this.y2 = calculateY2();

 this.rank = 0;

 }

 }

 public Individual(int[] genes) {

 this.genes = genes;

 this.x = calculateX();

 this.y1 = calculateY1();

 this.y2 = calculateY2();

 this.rank = 0;

 }

 public double getX() {

 return x;

 }

 public double getY1() {

 return y1;

 }

 public double getY2() {

 return y2;

 }

 public int getRank() {

 return rank;

 }

 public int updateRank() {

 return ++this.rank;

 }

 public void resetRank() {

 this.rank = 0;

 }

 public void generateIndividual() {

 for (int i = 0; i < GENE_LENGTH; ++i) {

 genes[i] = ThreadLocalRandom.current().nextInt(0, 2);

 }

 }

 public double calculateX() {

 return Integer.parseInt(Arrays.toString(genes).replaceAll("[,\\[\\]

]", ""), 2) / 170.5;

 }

 public double calculateY1() {

 return Math.pow(x - 2, 2);

 }

 public double calculateY2() {

 return Math.pow(x - 4, 2);

 }

 public int[] getGenesBeforeCutPoint(int cutPoint) {

 int[] genes = new int[cutPoint];

 System.arraycopy(this.genes, 0, genes, 0, cutPoint);

 return genes;

 }

 public int[] getGenesAfterCutPoint(int cutPoint) {

 int[] genes = new int[GENE_LENGTH - cutPoint];

 System.arraycopy(this.genes, cutPoint, genes, 0, genes.length);

 return genes;

 }

 @Override

 public boolean equals(Object o) {

 if (this == o) return true;

 if (o == null || getClass() != o.getClass()) return false;

 Individual that = (Individual) o;

 if (Double.compare(that.y1, y1) != 0) return false;

 if (Double.compare(that.y2, y2) != 0) return false;

 if (Double.compare(that.x, x) != 0) return false;

 if (rank != that.rank) return false;

 return Arrays.equals(genes, that.genes);

 }

 @Override

 public int hashCode() {

 int result;

 long temp;

 result = Arrays.hashCode(genes);

 temp = Double.doubleToLongBits(y1);

 result = 31 * result + (int) (temp ^ (temp >>> 32));

 temp = Double.doubleToLongBits(y2);

 result = 31 * result + (int) (temp ^ (temp >>> 32));

 temp = Double.doubleToLongBits(x);

 result = 31 * result + (int) (temp ^ (temp >>> 32));

 result = 31 * result + rank;

 return result;

 }

 @Override

 public String toString() {

 return "Individual{" +

 "genes=" + Arrays.toString(genes) +

 ", x=" + x +

 ", y1=" + y1 +

 ", y2=" + y2 +

 ", rank=" + rank +

 '}';

 }

}

File Population.java:
import java.util.Arrays;

public class Population {

 public static final int POPULATION_SIZE = 20;

 private Individual[] individuals;

 public Population(boolean initialize) {

 individuals = new Individual[POPULATION_SIZE];

 if (initialize) {

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 individuals[i] = new Individual(true);

 }

 }

 }

 public Population(Individual[] individuals) {

 this.individuals = new Individual[POPULATION_SIZE];

 System.arraycopy(individuals, 0, this.individuals, 0,

individuals.length);

 }

 public Individual getIndividual(int index) {

 return individuals[index];

 }

 public void replaceIndividual(Individual individual, Individual child) {

 for (int i = 0; i < individuals.length; ++i) {

 if (individuals[i].equals(individual)) {

 individuals[i] = child;

 break;

 }

 }

 }

 public Individual[] getAllIndividuals() {

 return individuals;

 }

 public void calculateRankForAllIndividuals() {

 resetRank();

 for (int i = 0; i < POPULATION_SIZE; ++i) {

 for (int j = 0; j < POPULATION_SIZE; ++j) {

 if (i != j && (individuals[i].getY1() <

individuals[j].getY1() &&

 individuals[i].getY2() <

individuals[j].getY2())) {

 individuals[i].updateRank();

 }

 }

 }

 }

 private void resetRank() {

 for (Individual individual: individuals) {

 individual.resetRank();

 }

 }

 @Override

 public String toString() {

 return "Population{\n" + Arrays.toString(individuals) + "}\n";

 }

}

File GeneticAlgorithm.java:
import java.util.concurrent.ThreadLocalRandom;

public class GeneticAlgorithm {

 private Population population;

 public GeneticAlgorithm(Population population) {

 this.population = population;

 }

 public Population run() {

 Population nextGeneration = new

Population(population.getAllIndividuals());

 nextGeneration.calculateRankForAllIndividuals();

 for (int i = 0; i < Population.POPULATION_SIZE; ++i) {

 Individual[] parents = chooseParents(nextGeneration);

 int cutPoint = ThreadLocalRandom.current().nextInt(0,

Individual.GENE_LENGTH);

 Individual[] children = crossover(parents, cutPoint);

 Individual child = getBetterIndividualFromTwoChildren(children);

 calculateIndividualRank(child);

 Individual individual =

findIndividualThatMostSimilarToChild(child);

 if (childBetterThanParent(individual, child)) {

 nextGeneration.replaceIndividual(individual, child);

 nextGeneration.calculateRankForAllIndividuals();

 }

 }

 population = nextGeneration;

 return population;

 }

 private Individual[] chooseParents(Population fittestIndividuals) {

 return new Individual[]

{fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

Population.POPULATION_SIZE)),

fittestIndividuals.getIndividual(ThreadLocalRandom.current().nextInt(0,

Population.POPULATION_SIZE))};

 }

 private Individual[] crossover(Individual[] parents, int curPoint) {

 Individual[] descendants = new Individual[2];

 int[] firstDescendantGenes =

concat(parents[0].getGenesBeforeCutPoint(curPoint),

 parents[1].getGenesAfterCutPoint(curPoint));

 int[] secondIndividualGenes =

concat(parents[0].getGenesAfterCutPoint(curPoint),

 parents[1].getGenesBeforeCutPoint(curPoint));

 descendants[0] = new Individual(firstDescendantGenes);

 descendants[1] = new Individual(secondIndividualGenes);

 return descendants;

 }

 private Individual getBetterIndividualFromTwoChildren(Individual[]

children) {

 return calculateIndividualRank(children[0]) >

calculateIndividualRank(children[1]) ? children[0] : children[1];

 }

 private Individual findIndividualThatMostSimilarToChild(Individual child)

{

 Individual individual = population.getIndividual(0);

 double minX = Math.abs(population.getIndividual(0).getX() -

child.getX());

 for (int i = 1; i < Population.POPULATION_SIZE; ++i) {

 double tempMinX = Math.abs(population.getIndividual(i).getX() -

child.getX());

 if (tempMinX < minX) {

 minX = tempMinX;

 individual = population.getIndividual(i);

 }

 }

 return individual;

 }

 private boolean childBetterThanParent(Individual individual, Individual

child) {

 return child.getRank() > individual.getRank() || (child.getY1() <

individual.getY1() && child.getY2() < individual.getY2());

 }

 private int calculateIndividualRank(Individual individual) {

 for (int i = 0; i < Population.POPULATION_SIZE; ++i) {

 if (individual.getY1() < population.getIndividual(i).getY1() &&

 individual.getY2() < population.getIndividual(i).getY2()) {

 individual.updateRank();

 }

 }

 return individual.getRank();

 }

 private int[] concat(int[] genes1, int[] genes2) {

 int[] genes = new int[Individual.GENE_LENGTH];

 System.arraycopy(genes1, 0, genes, 0, genes1.length);

 System.arraycopy(genes2, 0, genes, genes1.length, genes2.length);

 return genes;

 }

}

File Main.java:
import java.io.FileWriter;

import java.io.IOException;

/**

 * 10 ген 20 хромосом; x=0:6 (x-2)^2 (x-4)^2

 */

public class Main {

 public static void main(String[] args) throws IOException {

 FileWriter writer = new FileWriter("output.txt");

 Population population = new Population(true);

 GeneticAlgorithm geneticAlgorithm = new GeneticAlgorithm(population);

 for (int i = 0; i < 1000; ++i) {

 population = geneticAlgorithm.run();

 System.out.println("ITERATION #" + (i + 1));

 writer.write("ITERATION #" + (i + 1) + ":\n");

 for (Individual individual: population.getAllIndividuals()) {

 writer.write(individual.toString() + "\n");

 System.out.println(individual);

 }

 }

 }

}

