
Yury Yuryn (II-10)
Parate Optimum Solution- Dominate & Rank
Iteration №1:

Binary X Y1 Y2 Rank
1 1 0 0 0 0 1 0 0 0 x=4.551319648093842 y1=6.509231946749686 y2=0.3039533543743178 Rank=2
1 0 1 1 1 1 1 0 0 0 x=4.457478005865102 y1=6.039198149310719 y2=0.2092861258503105 Rank=3
0 1 0 1 1 1 1 1 0 0 x=2.228739002932551 y1=0.052321531462577626 y2=3.137365519732373 Rank=7
0 0 1 1 1 0 0 1 0 0 x=1.3372434017595307 y1=0.4392463085112788 y2=7.0902727014731575 Rank=4
0 1 0 0 1 1 1 1 1 0 x=1.8651026392961876 y1=0.018197297924854475 y2=4.557786740740103 Rank=6
0 0 0 0 1 1 1 1 0 1 x=0.35777126099706746 y1=2.6969152312071616 y2=13.26583018721889 Rank=0
0 1 1 1 1 0 0 0 1 0 x=2.8269794721407626 y1=0.6838950473422144 y2=1.3759771587791638 Rank=5
1 0 0 1 1 0 0 1 1 1 x=3.6070381231671553 y1=2.582571529312613 y2=0.15441903664399179 Rank=5
1 0 1 1 0 1 1 1 0 0 x=4.293255131964809 y1=5.259019100282934 y2=0.08599857242369761 Rank=4
1 0 0 0 1 0 1 1 1 1 x=3.278592375366569 y1=1.6347984623455256 y2=0.5204289608792492 Rank=4
0 0 0 1 0 1 1 1 0 1 x=0.5454545454545454 y1=2.115702479338843 y2=11.933884297520661 Rank=1
1 1 1 1 0 1 1 1 1 1 x=5.812316715542522 y1=14.533758739604924 y2=3.284491877434835 Rank=0
1 0 0 1 1 1 1 1 0 0 x=3.730205278592375 y1=2.9936103060689185 y2=0.0727891916994179 Rank=5
1 1 0 1 0 0 1 1 1 0 x=4.961876832844575 y1=8.77271437294141 y2=0.9252070415631101 Rank=1
0 0 1 0 0 0 1 0 0 0 x=0.7976539589442815 y1=1.4456360024423596 y2=10.255020166665233 Rank=2
0 1 0 0 0 1 1 0 0 0 x=1.6422287390029326 y1=0.1280002751954317 y2=5.5590853191837 Rank=5
0 0 1 0 1 1 1 1 1 0 x=1.1143695014662756 y1=0.7843413799330933 y2=8.32686337406799 Rank=3
0 1 1 0 1 0 0 1 1 1 x=2.4809384164222874 y1=0.23130176039077752 y2=2.307548094701628 Rank=6
1 0 1 0 0 1 1 1 0 0 x=3.9178885630498534 y1=3.6782965402774317 y2=0.006742288078017893 Rank=5
1 0 0 0 1 0 0 1 1 1 x=3.231671554252199 y1=1.5170148175540281 y2=0.5903286005452313 Rank=4

Iteration 350:
Binary X Y1 Y2 Rank

1 0 1 1 0 1 0 0 0 1 x=4.228739002932551 y1=4.9672775431927825 y2=0.052321531462577626 Rank=2
1 0 1 0 1 0 1 0 0 1 x=3.994134897360704 y1=3.9765739888717846 y2=3.4399428969479045E-5 Rank=3
0 1 0 1 1 0 1 1 1 1 x=2.1524926686217007 y1=0.023254013983367836 y2=3.413283339496565 Rank=5
0 1 0 0 1 0 1 0 1 1 x=1.7536656891495601 y1=0.06068059270216115 y2=5.046017836103919 Rank=4
0 1 0 1 0 1 1 0 1 0 x=2.029325513196481 y1=8.599857242369761E-4 y2=3.8835579329383134 Rank=6
0 0 1 1 1 0 1 0 0 0 x=1.3607038123167154 y1=0.4086996155863814 y2=6.9658843663195205 Rank=0
0 1 1 0 0 0 1 1 1 1 x=2.340175953079179 y1=0.1157196790533278 y2=2.7550158667366116 Rank=4
1 0 0 1 1 0 1 1 1 1 x=3.653958944281525 y1=2.735580189368856 y2=0.11974441224275686 Rank=2
1 0 1 0 0 1 1 0 0 1 x=3.900293255131965 y1=3.611114455500039 y2=0.009941434972179444 Rank=3
1 0 0 1 0 1 0 1 1 0 x=3.5073313782991202 y1=2.2720478840051257 y2=0.2427223708086446 Rank=0
0 0 1 1 1 1 1 0 1 0 x=1.466275659824047 y1=0.28486167129625645 y2=6.419759032000068 Rank=1
1 0 1 1 1 1 1 0 1 1 x=4.475073313782991 y1=6.125987908600715 y2=0.225694653468752 Rank=0
1 0 0 1 1 1 1 0 1 0 x=3.718475073313783 y1=2.953156577600811 y2=0.07925628434567997 Rank=2
1 0 1 1 1 1 1 0 0 0 x=4.457478005865102 y1=6.039198149310719 y2=0.2092861258503105 Rank=1
0 1 0 0 0 0 0 1 1 1 x=1.5425219941348973 y1=0.20928612585031092 y2=6.039198149310722 Rank=2
0 1 0 1 0 0 1 0 1 1 x=1.9413489736070382 y1=0.0034399428969479045 y2=4.238044048468796 Rank=5
0 1 0 0 0 0 1 1 1 0 x=1.5835777126099706 y1=0.17340752143514424 y2=5.839096670995262 Rank=3
0 1 0 1 1 1 1 0 1 0 x=2.2170087976539588 y1=0.047092818259216816 y2=3.179057627643382 Rank=5
1 0 1 0 0 0 1 0 1 1 x=3.8181818181818183 y1=3.3057851239669427 y2=0.03305785123966936 Rank=3
0 1 1 0 1 1 1 1 1 1 x=2.621700879765396 y1=0.3865119839010671 y2=1.899708464839484 Rank=1

Iteration 700:
Binary X Y1 Y2 Rank

1 0 1 0 1 0 1 0 1 0 x=4.0 y1=4.0 y2=0.0 Rank=2
1 0 1 0 1 0 1 0 0 0 x=3.9882697947214076 y1=3.9532167766015083 y2=1.3759771587791618E-4 Rank=0
0 1 0 1 1 0 1 0 1 1 x=2.129032258064516 y1=0.016649323621227858 y2=3.5005202913631637 Rank=1
0 1 0 1 0 1 0 1 1 0 x=2.005865102639296 y1=3.4399428969479045E-5 y2=3.9765739888717846 Rank=3
0 1 0 1 1 0 0 0 1 0 x=2.0762463343108504 y1=0.005813503495841959 y2=3.7008281662524403 Rank=1
0 1 0 0 1 1 1 1 1 1 x=1.8709677419354838 y1=0.016649323621227917 y2=4.532778355879292 Rank=0
0 1 1 0 0 0 0 1 1 0 x=2.2873900293255134 y1=0.08259302895571945 y2=2.9330329116536658 Rank=0
1 0 0 1 1 0 1 0 1 1 x=3.63049853372434 y1=2.658525468477223 y2=0.13653133357986266 Rank=0
1 0 1 0 0 1 1 0 0 1 x=3.900293255131965 y1=3.611114455500039 y2=0.009941434972179444 Rank=0
1 0 0 1 0 1 0 1 1 0 x=3.5073313782991202 y1=2.2720478840051257 y2=0.2427223708086446 Rank=0
0 1 0 1 0 0 1 0 0 0 x=1.9237536656891496 y1=0.005813503495841959 y2=4.310798840739244 Rank=1
1 0 1 0 1 0 1 1 0 0 x=4.011730205278592 y1=4.047058418830248 y2=1.3759771587791618E-4 Rank=0
1 0 0 1 1 1 0 1 1 1 x=3.7008797653958942 y1=2.8929919763331924 y2=0.08947291474961526 Rank=0
1 0 1 0 1 0 1 0 1 1 x=4.005865102639296 y1=4.023494809986154 y2=3.4399428969479045E-5 Rank=1
0 1 0 1 0 1 0 0 0 0 x=1.970674486803519 y1=8.599857242369761E-4 y2=4.11816203851016 Rank=2
0 1 0 1 0 1 1 0 1 0 x=2.029325513196481 y1=8.599857242369761E-4 y2=3.8835579329383134 Rank=2
0 1 0 1 0 1 0 1 0 0 x=1.9941348973607038 y1=3.4399428969479045E-5 y2=4.023494809986154 Rank=3
0 1 0 1 1 1 0 1 0 1 x=2.187683284457478 y1=0.03522501526474654 y2=3.284491877434835 Rank=0
1 0 0 1 1 1 1 1 0 1 x=3.7360703812316713 y1=3.0139403685898807 y2=0.0696588436631953 Rank=0
0 1 1 0 0 1 0 1 0 0 x=2.36950146627566 y1=0.13653133357986266 y2=2.658525468477223 Rank=0

Last iteration:

Binary X Y1 Y2 Rank
1 0 1 0 1 0 1 0 1 0 x=4.0 y1=4.0 y2=0.0 Rank=2
1 0 1 0 1 0 1 0 0 0 x=3.9882697947214076 y1=3.9532167766015083 y2=1.3759771587791618E-4 Rank=0
0 1 0 1 1 0 1 0 1 1 x=2.129032258064516 y1=0.016649323621227858 y2=3.5005202913631637 Rank=0
0 1 0 1 0 1 1 0 1 0 x=2.029325513196481 y1=8.599857242369761E-4 y2=3.8835579329383134 Rank=0
0 1 0 1 0 1 1 1 0 1 x=2.0469208211143695 y1=0.002201563454046659 y2=3.814518278996569 Rank=0
0 1 0 1 0 1 0 1 0 0 x=1.9941348973607038 y1=3.4399428969479045E-5 y2=4.023494809986154 Rank=0
0 1 1 0 0 0 0 1 1 0 x=2.2873900293255134 y1=0.08259302895571945 y2=2.9330329116536658 Rank=0
1 0 0 1 1 0 1 0 1 1 x=3.63049853372434 y1=2.658525468477223 y2=0.13653133357986266 Rank=0
1 0 1 0 0 1 1 0 0 1 x=3.900293255131965 y1=3.611114455500039 y2=0.009941434972179444 Rank=0
1 0 0 1 0 1 0 1 1 0 x=3.5073313782991202 y1=2.2720478840051257 y2=0.2427223708086446 Rank=0
0 1 0 1 0 1 0 1 0 1 x=2.0 y1=0.0 y2=4.0 Rank=1
1 0 1 0 1 0 1 1 0 0 x=4.011730205278592 y1=4.047058418830248 y2=1.3759771587791618E-4 Rank=0
1 0 0 1 1 1 0 1 1 1 x=3.7008797653958942 y1=2.8929919763331924 y2=0.08947291474961526 Rank=0
1 0 1 0 1 0 1 0 1 1 x=4.005865102639296 y1=4.023494809986154 y2=3.4399428969479045E-5 Rank=1
0 1 0 1 0 1 0 1 1 0 x=2.005865102639296 y1=3.4399428969479045E-5 y2=3.9765739888717846 Rank=0
0 1 0 1 0 1 1 0 1 1 x=2.035190615835777 y1=0.0012383794429012456 y2=3.860475916099793 Rank=0
0 1 0 1 0 1 0 1 1 1 x=2.0117302052785924 y1=1.3759771587791618E-4 y2=3.9532167766015083 Rank=0
0 1 0 1 1 1 0 1 0 1 x=2.187683284457478 y1=0.03522501526474654 y2=3.284491877434835 Rank=0
1 0 0 1 1 1 1 1 0 1 x=3.7360703812316713 y1=3.0139403685898807 y2=0.0696588436631953 Rank=0
0 1 1 0 0 1 0 1 0 0 x=2.36950146627566 y1=0.13653133357 y2=2.658525468477223 Rank=0

Fitness(Rank) / generation:

Code of program:
public class Main {
 public static Double[][] params = new Double[20][2];
 public static Double[][] generation = new Double[20][10];
 public static Double[][] good = new Double[10][10];
 public static Double[][] childes = new Double[10][10];
 public static Double[] xs = new Double[20];
 public static Integer childCount = 0;
 public static Integer checkCount = 0;
 public static Double prevMax = 0.0;
 public static void main(String[] args) {
 Integer r = 0;
 createGenerate();
 showInfo();
 while(true) {
 Arrays.sort(generation, new Comparator<Double[]>() {
 @Override
 public int compare(Double[] o1, Double[] o2) {
 Double int1 = fitness(o1);
 Double int2 = fitness(o2);
 return (int) (int2 - int1);
 }
 });
 Double max = fitness(generation[0]);
 if(prevMax.equals(max))
 checkCount ++;
 else
 checkCount = 0;
 prevMax = max;
 if(r.equals(5) || r.equals(3) || r.equals(7) || r.equals(0)) {
 System.out.println(returnMaxPrice(generation[0]));
 System.out.println(returnMaxVolume(generation[0]));
 showTable();

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

Maximum

Average

 }
 System.out.printf("%.3f %.3f", max,average());
 System.out.println();
 r++;
 if(checkCount > 30) {
 System.out.println(returnMaxPrice(generation[0]));
 System.out.println(returnMaxVolume(generation[0]));
 showTable();
 return;
 }
 setGood();
 Random random = new Random();
 childCount = 0;
 for (int i = 0; i < 5; i++) {
 createChildes(good[random.nextInt(10)], good[random.nextInt(10)]);
 }
 createNewGeneration();
 }
 }
 public static void showTable() {
 System.out.println(" It. Pric. Vol.");
 for(int i=0;i<20;i++) {
 System.out.printf("%4d",generation[0][i].intValue());
 System.out.printf("%4d", params[generation[0][i].intValue()][0].intValue());
 System.out.printf("%4d", params[generation[0][i].intValue()][1].intValue());
 System.out.println();
 }
 }
 public static Double returnY1(Double x) {
 return Math.pow(x - 2,2);
 }
 public static Double returnY2(Double x) {
 return Math.pow(x - 4,2);
 }
 public static void createGenerate() {
 Random random = new Random();
 for (int j = 0; j < 10; j++) {
 generation[0][j] = 0.0;
 }
 for (int j = 0; j < 10; j++) {
 generation[19][j] = 1.0;
 }
 for(int i=1;i<19;i++) {
 for (int j = 0; j < 10; j++) {
 generation[i][j] = random.nextInt(2) * 1.0;
 }
 }
 }
 public static void showInfo() {
 xs = new Double[20];
 for (int t=0;t<20;t++) {
 String str = "";
 for (int i = 0; i < 10; i++) {
 str += String.valueOf(generation[t][i].intValue());
 }
 Double x = Integer.parseInt(str,2) / 170.5;
 xs[t] = x;
 System.out.printf("i=%s x=%.5f y1=%.5f y2=%.5f", str, x, returnY1(x),
returnY2(x));

 System.out.println();
 }
 }
 public static Double fitness(Double[] obj) {
 Double sumVolume = 0.0;
 Double sumPrice = 0.0;
 for (int i=0; i<obj.length;i++) {
 sumVolume += returnVolume(obj[i]);
 }
 for (int i=0; i<obj.length;i++) {
 sumPrice += returnPrice(obj[i]);
 }
 if(sumVolume < 100)
 return sumPrice * sumVolume;
 else return 0.0;
 }
 public static Double returnMaxPrice(Double obj[]) {
 Double sumPrice = 0.0;
 for (int i=0; i<obj.length;i++) {
 sumPrice += returnPrice(obj[i]);
 }
 return sumPrice;
 }
 public static Double returnMaxVolume(Double obj[]) {
 Double sumVolume = 0.0;
 for (int i=0; i<obj.length;i++) {
 sumVolume += returnVolume(obj[i]);
 }
 return sumVolume;
 }
 public static Double returnPrice(Double item) {
 return params[item.intValue()][0];
 }
 public static Double returnVolume(Double item) {
 return params[item.intValue()][1];
 }
 public static void setGood() {
 for(int i =0; i< 10; i++) {
 good[i] = generation[i];
 }
 }
 public static void createChildes(Double[] parent1, Double[] parent2) {
 Random random = new Random();
 Integer delimiter = random.nextInt(20);
 Double[] child1 = new Double[20];
 Double[] child2 = new Double[20];
 for(int i = 0;i<20;i++) {
 if(i<=delimiter)
 child1[i] = parent1[i];
 else
 child1[i] = parent2[i];
 }
 for(int i = 0;i<20;i++) {
 if(i<=delimiter)
 child2[i] = parent2[i];
 else
 child2[i] = parent1[i];
 }
 childes[childCount] = child1;

 childCount++;
 childes[childCount] = child2;
 childCount++;
 }
 public static void createNewGeneration() {
 for (int i=0;i<20;i++) {
 if(i<10)
 generation[i] = good[i];
 else
 generation[i] = childes[i-10];
 }
 }
 public static Double average() {
 Double s = 0.0;
 for (int i=0;i<20;i++) {
 s+= fitness(generation[i]);
 }
 Double average = s / 20;
 return average;
 }
}

