Student: Kirill Tsibikov

1. Maximization Function

Brest 2016

Function: y=x1*sin(abs(x1))+x2*sin(abs(x2))

-
(<))
>
o
("]
("2
(®)
-

O
€
-
(©)

=
c

>
+
c

9

)
(S]

2

K

(%)
o0
c

=

e
©
(5}
c
=)
-
-

sauli4

<

Iteration

Listing

package javaapplicationl;
import java.util.Map;
import java.util.Random;
class GeneticAlgo({
boolean[][] popln;
public enum SelectionType {
TOURNEY, ROULETTE WHEEL, TRUNCATING

public enum CrossingType {
ONE POINT RECOMBINATION, TWO POINT RECOMBINATION,
ELEMENTWISE RECOMBINATION, ONE ELEMENT EXCHANGE
}
private SelectionType slctp;
private CrossingType crstp;
private int genomLength; //IOnmuHa Tenoma B OuTax
private int generationCount; //Koj-BO MOKOJIEHUM
private int individualCount; //Kom-BO
T'enomMoOB (MHouBumos, Ocober) B IIOKOJIEHUU
private int[] chosenchromosom;
private SelectionType selectionType; //Twun Cejexkumuu
private CrossingType crossingType; //Tun CkpeunmBaHUs
public GeneticAlgo (String s, String c){
slctp=SelectionType.valueOf (s);

//
//
//
//

crstp =Cross

ingType.valueOf (c) ;

popln=new Dboolean[100][1000];
genomLength=1000;

generationCo
individualCo
chosenchromo
}
public boolean]|]
this.generat
float ftnsma
for (int 1i=0;
{
this.sel
for (int
{
ftns

System.
System.

System

System.

if (i==0]
{
Syst
for (

{

}

unt=100;
unt=100;
som=new int[100];

[] run(){
eFirstGeneration () ;
x=0;

i<100000000; i++)

ection () ;
J=0; j<100; J++)

max= (ftnsmax<=fitnes(j)) ?fitnes(j) :ftnsmax;

out.print (avgfitnes());
out.print(":");
.out.print (ftnsmax) ;
out.println();

| i==5001 |1i==800)

em.out.println("The " + i + " population");
int j=0; 3j<100; J++)

System.out.print (j+1);
System.out.print (":");
System.out.print (this.chosenchromosom[j]) ;
System.out.println();

if (ftnsmax==1000)break;

return (new boolean[100][100071);

}

private void generateFirstGeneration () {
Random rnd=new Random() ;

for (int 1i=0;

{

i<100; i++)

for (int j=0; 3<1000; j++)

{

popln[i] [J]l=rnd.nextBoolean() ;

}

} //rTeHepauus MNepBOTrO MOKOJIEHUS

private void selection () {
boolean[] [] genomListOffsprings=new boolean[100][1000];
Random rndd=new Random{() ;
switch(this.slctp)

{

case ROULETTE WHEEL: {
float[] wheel = new float[this.individualCount];

wheel [0] =
o0 T'eHOoMa

this.chosenchromosom[0]

(int i=1;i<this.individualCount;i++) {
wheel[1

duTHeCcCOYHKUIMM OJIS 1-0T'0 T'€HOoMa

for

}

fitnes (0)

;//3BHauenue durHeccOyHKUMM OIS 1-

] = wheel[i-1] + fitnes(i);//3HaueHue

this.chosenchromosom[i]=0;

float all = wheel[this.individualCount-1];
for (int i=0;i<this.individualCount;i++) {
float index = Math.abs (rndd.nextFloat())*all;
int 1 = 0;
int r = individualCount-1;
int ¢ = 0;
while (1 < r){
c = (1l+r) >> 1;
if (index <= wheel[c])
r = c;
else
1l =c¢c+ 1;
}
int a=1;
index = Math.abs (rndd.nextFloat()) *all;
1 =0;
r = individualCount-1;
c = 0;
while (1 < r){
c = (1l+r) >> 1;
if (index <= wheel[c])
r = c;
else
1l =c¢ + 1;

}

this.chosenchromosom/[1l
this.chosenchromosom[a]+
genomListOffsprings[i]

1+

= thlS crossing(l,a);

popln=genomListOffsprings;

break;

}
case TOURNEY:

{

for (int 1=0;i<this.individualCount;i++) {

int indexl = rndd.nextInt (individualCount) ;
int index2 = rndd.nextInt (individualCount) ;
int index3 = rndd.nextInt (individualCount) ;
int index4 = rndd.nextInt (individualCount) ;
float frl = fitnes (indexl);

float fr2 = fitnes (index2);
indexl=(frl>fr2) ?indexl:index2;

float fr3 = fitnes (index3);

float fr4 = fitnes (index4);

index2=(fr3>fr4) ?index3:index4;
genomListOffsprings([i] =
this.crossing(indexl, index?2);
}
popln=genomListOffsprings;
break;
}
case TRUNCATING:
{
int percent=(Math.abs (rndd.nextInt ())+10)%50+1;
this.sort ();
for(int i=0; i<this.individualCount; i++)
{
genomListOffsprings([i] =
this.crossing((Math.abs (rndd.nextInt())) %50, (Math.abs (rndd.nextInt ()))
%50) ;
}
popln=genomListOffsprings;
break;
}
default:
break;

}
} //Tpolienypa ceJyieKuu
private boolean[] crossing(int a, int b) {
boolean[] vec=new boolean[1000];
switch (crstp)
{
case ONE POINT RECOMBINATION:
{
for(int i=0; i<genomLength; i++)
{

Random rndd=new Random{() ;

vec[i]=(rndd.nextBoolean ()) ?popln([b] [i]:poplnla]l[il];
}
break;
}
default:
break;

return vec;
} //lpouenypa CKpelMBaHUS
private float fitnes (int nomber) {
float ftns=0.f;
for(int j=0; j<genomLength; j++)
{
ftns+=(this.popln[nomber] [j])?1:0;
}
return ftns;
} //durHec OyHKLMSA

private float avgfitnes () {
float ftns=0.f;
for(int i=0; i<100; i++)
for (int j=0; j<genomLength; j++)
{
ftns+=(this.popln[i] [j])?1:0;
}
return ftns/100;
} //durHec QyHKLMSA
private void sort()
{
for(int i=0; i<this.individualCount; i++)
{
boolean[] amiba;
amiba = new boolean[10007];
amiba=popln[i];
double fit=fitnes(i):;
for (int j=i; j<this.individualCount; j++)
{
if(fitnes(j)>fit) {
fit=fitnes (3);
amiba=popln[jl;
popln(Jj]=poplnfi];
popln[i]=amiba;

}
public class JavaApplicationl {
public static void main(String[] args) {
GeneticAlgo p=new
GeneticAlgo ("ROULETTE WHEEL", "ONE POINT RECOMBINATION");
p.run();

}

