
Student: Kirill Tsibikov

1. Maximization Function

Brest 2016

Function: y=x1*sin(abs(x1))+x2*sin(abs(x2))

-2

0

2

4

6

8

10

12

1
6

1
1

2
1

1
8

1
2

4
1

3
0

1
3

6
1

4
2

1
4

8
1

5
4

1
6

0
1

6
6

1
7

2
1

7
8

1
8

4
1

9
0

1
9

6
1

1
0

2
1

1
0

8
1

1
1

4
1

1
2

0
1

1
2

6
1

1
3

2
1

1
3

8
1

1
4

4
1

1
5

0
1

1
5

6
1

1
6

2
1

1
6

8
1

1
7

4
1

1
8

0
1

1
8

6
1

1
9

2
1

1
9

8
1

2
0

4
1

2
1

0
1

2
1

6
1

2
2

2
1

2
2

8
1

2
3

4
1

2
4

0
1

2
4

6
1

2
5

2
1

Fi
tn

e
s

Iteration

Truncatting Sellection + Uniform Crossover

AVG BEST

Listing

package javaapplication1;

import java.util.Map;

import java.util.Random;

class GeneticAlgo{

 boolean[][] popln;

 public enum SelectionType {

 TOURNEY, ROULETTE_WHEEL, TRUNCATING

}

 public enum CrossingType {

 ONE_POINT_RECOMBINATION, TWO_POINT_RECOMBINATION,

ELEMENTWISE_RECOMBINATION, ONE_ELEMENT_EXCHANGE

}

 private SelectionType slctp;

 private CrossingType crstp;

 private int genomLength; //Длина генома в битах

 private int generationCount; //Кол-во поколений

 private int individualCount; //Кол-во

Геномов(Индивидов,Особей) в поколении

 private int[] chosenchromosom;

 private SelectionType selectionType; //Тип Селекции

 private CrossingType crossingType; //Тип Скрещивания

 public GeneticAlgo(String s, String c){

 slctp=SelectionType.valueOf(s);

 crstp =CrossingType.valueOf(c);

 popln=new boolean[100][1000];

 genomLength=1000;

 generationCount=100;

 individualCount=100;

 chosenchromosom=new int[100];

 }

 public boolean[][] run(){

 this.generateFirstGeneration();

 float ftnsmax=0;

 for(int i=0; i<100000000; i++)

 {

 this.selection();

 for(int j=0; j<100; j++)

 {

 ftnsmax=(ftnsmax<=fitnes(j))?fitnes(j):ftnsmax;

 }

// System.out.print(avgfitnes());

// System.out.print(":");

// System.out.print(ftnsmax);

// System.out.println();

 if(i==0||i==500||i==800)

 {

 System.out.println("The " + i + " population");

 for(int j=0; j<100; j++)

 {

 System.out.print(j+1);

 System.out.print(":");

 System.out.print(this.chosenchromosom[j]);

 System.out.println();

 }

 }

 if(ftnsmax==1000)break;

 }

 return (new boolean[100][1000]);

 }

 private void generateFirstGeneration() {

 Random rnd=new Random();

 for(int i=0; i<100; i++)

 {

 for(int j=0; j<1000; j++)

 {

 popln[i][j]=rnd.nextBoolean();

 }

 }

 } //генерация первого поколения

 private void selection(){

 boolean[][] genomListOffsprings=new boolean[100][1000];

 Random rndd=new Random();

 switch(this.slctp)

 {

 case ROULETTE_WHEEL:{

 float[] wheel = new float[this.individualCount];

 wheel[0] = fitnes(0);//Значение ФитнессФункции для 1-

ого генома

 this.chosenchromosom[0]=0;

 for (int i=1;i<this.individualCount;i++){

 wheel[i] = wheel[i-1] + fitnes(i);//Значение

ФитнессФункции для i-ого генома

 this.chosenchromosom[i]=0;

 }

 float all = wheel[this.individualCount-1];

 for (int i=0;i<this.individualCount;i++){

 float index = Math.abs(rndd.nextFloat())*all;

 int l = 0;

 int r = individualCount-1;

 int c = 0;

 while (l < r){

 c = (l+r) >> 1;

 if (index <= wheel[c])

 r = c;

 else

 l = c + 1;

 }

 int a=l;

 index = Math.abs(rndd.nextFloat())*all;

 l = 0;

 r = individualCount-1;

 c = 0;

 while (l < r){

 c = (l+r) >> 1;

 if (index <= wheel[c])

 r = c;

 else

 l = c + 1;

 }

 this.chosenchromosom[l]++;

 this.chosenchromosom[a]++;

 genomListOffsprings[i] = this.crossing(l,a);

 }

 popln=genomListOffsprings;

 break;

 }

 case TOURNEY:

 {

 for (int i=0;i<this.individualCount;i++){

 int index1 = rndd.nextInt(individualCount);

 int index2 = rndd.nextInt(individualCount);

 int index3 = rndd.nextInt(individualCount);

 int index4 = rndd.nextInt(individualCount);

 float fr1 = fitnes(index1);

 float fr2 = fitnes(index2);

 index1=(fr1>fr2)?index1:index2;

 float fr3 = fitnes(index3);

 float fr4 = fitnes(index4);

 index2=(fr3>fr4)?index3:index4;

 genomListOffsprings[i] =

this.crossing(index1, index2);

 }

 popln=genomListOffsprings;

 break;

 }

 case TRUNCATING:

 {

 int percent=(Math.abs(rndd.nextInt())+10)%50+1;

 this.sort();

 for(int i=0; i<this.individualCount; i++)

 {

 genomListOffsprings[i] =

this.crossing((Math.abs(rndd.nextInt()))%50,(Math.abs(rndd.nextInt()))

%50);

 }

 popln=genomListOffsprings;

 break;

 }

 default:

 break;

 }

 } //Процедура селекци

 private boolean[] crossing(int a, int b) {

 boolean[] vec=new boolean[1000];

 switch(crstp)

 {

 case ONE_POINT_RECOMBINATION:

 {

 for(int i=0; i<genomLength; i++)

 {

 Random rndd=new Random();

vec[i]=(rndd.nextBoolean())?popln[b][i]:popln[a][i];

 }

 break;

 }

 default:

 break;

 }

 return vec;

 } //Процедура скрещивания

 private float fitnes(int nomber){

 float ftns=0.f;

 for(int j=0; j<genomLength; j++)

 {

 ftns+=(this.popln[nomber][j])?1:0;

 }

 return ftns;

 } //Фитнес функция

 private float avgfitnes(){

 float ftns=0.f;

 for(int i=0; i<100; i++)

 for(int j=0; j<genomLength; j++)

 {

 ftns+=(this.popln[i][j])?1:0;

 }

 return ftns/100;

 } //Фитнес функция

 private void sort()

 {

 for(int i=0; i<this.individualCount; i++)

 {

 boolean[] amiba;

 amiba = new boolean[1000];

 amiba=popln[i];

 double fit=fitnes(i);

 for(int j=i; j<this.individualCount; j++)

 {

 if(fitnes(j)>fit){

 fit=fitnes(j);

 amiba=popln[j];

 popln[j]=popln[i];

 popln[i]=amiba;

 }

 }

 }

 }

}

public class JavaApplication1 {

 public static void main(String[] args) {

 GeneticAlgo p=new

GeneticAlgo("ROULETTE_WHEEL","ONE_POINT_RECOMBINATION");

 p.run();

 }

}

