
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace siit_2
{
 class generation
 {
 public static int numOfGens = 22;
 public static int numOfChromo = 20;
 List<int[]> gens;
 List<double> fitness { get; }
 List<float> probability { get; }
 List<double> chromSelect;
 StreamWriter X1 = new StreamWriter("X1.txt");
 StreamWriter X2 = new StreamWriter("X2.txt");
 StreamWriter fit = new StreamWriter("fit.txt");

 public double averagefitness = 0f;
 Random mutat = new Random();
 int rando = 0;

 public generation()
 {
 gens = new List<int[]>();
 fitness = new List<double>();
 probability = new List<float>();
 chromSelect = new List<double>();

 for (int j = 0; j < numOfChromo; j++)
 {
 int[] gen = new int[numOfGens];

 gens.Add(gen);
 fitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 }
 }

 public generation(List<int[]> new_gens)
 {
 gens = new List<int[]>();
 fitness = new List<double>();
 probability = new List<float>();
 chromSelect = new List<double>();

 gens = new_gens;
 for (int j = 0; j < numOfChromo; j++)
 {

 fitness.Add(0);
 probability.Add(0f);
 chromSelect.Add(0);
 }
 }

 public void randomize()
 {
 int tmp = -1;
 Random rand = new Random();
 for (int i = 0; i < numOfChromo; i++)
 {
 for (int j = 0; j < numOfGens; j++)
 {

 gens[i][j] = rand.Next() % 2;
 }
 }
 }
 public void setFitness()
 {
 for (int i = 0; i < numOfChromo; i++)
 {
 double sum = 0;
 List<double> x = new List<double>();
 for (int z = 0; z < 2; z++)
 {
 bool minus = false;
 string x1 = "";
 for (int j = z*11; j < numOfGens/2+z*11; j++)
 {
 if (j == 0 || j == 11)
 {
 if (gens[i][j] == 0) minus = true;
 }
 else x1 = x1 + gens[i][j].ToString();
 }
 x.Add(((double)Convert.ToInt32(x1, 2)*5)/1023);
 if (minus) x[z] *= -1;
 if (z == 0)
 X1.WriteLine(x[z]);
 else X2.WriteLine(x[z]);
 }
 for (int j = 0; j < 2; j++)
 {
 sum += x[j] * Math.Sin(Math.Abs(x[j]));

 }
 fitness[i] = sum;
 fit.WriteLine(fitness[i]);
 }
 fit.Close();
 X1.Close();
 X2.Close();

 }
 public void setProbability()
 {
 double mass = 0; ;
 for (int i = 0; i < numOfChromo; i++)
 {
 mass += fitness[i];
 }
 averagefitness = mass / numOfChromo;
 for (int i = 0; i < numOfChromo; i++)
 {
 probability[i] = (float)fitness[i] / (float)mass;
 }
 }
 public int[] newChild()
 {

 Random rand = new Random(DateTime.Now.TimeOfDay.Milliseconds + rando);
 rando++;
 if (rando == 10000000) rando = 0;
 int rand_num = rand.Next(numOfChromo/2);
 float sum = 0f;
 int[] chrom_1 = new int[numOfGens], chrom_2 = new int[numOfGens];

 //for (int i = 0; i < 20; i++)
 //{
 // sum += probability[i] * 1000000000;
 // if (rand_num <= sum)
 // {
 // chromSelect[i]++;
 // chrom_1 = gens[i];
 // break;
 // }

 //}
 chrom_1 = gens[rand_num]; // for truncate
 sum = 0f;
 rand_num = rand.Next(numOfChromo/2);
 //for (int i = 0; i < 20; i++)
 //{
 // sum += probability[i] * 1000000000;
 // if (rand_num <= sum)
 // {
 // chromSelect[i]++;

 // chrom_2 = gens[i];
 // break;
 // }
 //}
 chrom_2 = gens[rand_num]; // for truncate

 int[] new_chrom = new int[numOfGens];

 //unified crossover
 for (int i = 0; i < numOfGens; i++)
 {
 if (rand.Next() % 2 == 1) new_chrom[i] = chrom_1[i];
 else new_chrom[i] = chrom_2[i];
 }

 //one point crossover
 //int point = rand.Next() % 1000;
 //for (int i = 0; i < 1000; i++)
 //{
 // if (i < point) new_chrom[i] = chrom_1[i];
 // else new_chrom[i] = chrom_2[i];
 //}
 Mutation(new_chrom);
 return new_chrom;
 }
 public double bestFitness()
 {
 return fitness.Max();
 }

 public void Sort()
 {
 for (int i = 0; i < numOfChromo - 1; i++)
 {
 bool swapped = false;
 for (int j = 0; j < numOfChromo - i - 1; j++)
 {
 if (fitness[j] < fitness[j + 1])
 {
 int[] tmp_gen = gens[j];
 gens[j] = gens[j + 1];
 gens[j + 1] = tmp_gen;

 double tmp_fit = fitness[j];
 fitness[j] = fitness[j + 1];
 fitness[j + 1] = tmp_fit;
 swapped = true;
 }

 }

 if (!swapped) break;
 }
 }
 public double getAverageFit()
 {
 return averagefitness;
 }
 public void WriteTable(StreamWriter file1, StreamWriter file2)
 {
 for (int i = 0; i < numOfChromo; i++)
 {
 file1.WriteLine(chromSelect[i].ToString());
 file2.WriteLine(i.ToString());
 }
 file1.WriteLine();
 file1.WriteLine();
 }
 public int[] GetMaxChromo()
 {
 return gens[0];
 }

 private void Mutation(int[] chromo)
 {
 for (int i = 0; i < numOfGens; i++)
 {
 if (mutat.Next() % 50 == 5)
 {
 int tmp = -1;
 if (chromo[i] == 1) chromo[i] = 0;
 else chromo[i] = 1;
 }
 }
 }
 }
}

