Ex2. Matveychuk, II-11

Maximization of Test Functions

code(Python):
import random
import math
def get_fitness(chromosome):
strChrom = ""
for ch in chromosome:
strChrom += str(ch)
strChrom = strChrom[::-1]
x1 =5 * (int(strChrom[1:11], 2) / 1023)
x2 =5 * (int(strChrom[12:22], 2) / 1023)
if strChrom[@] == "1":
x1 = -x1
if strChrom[12] == "1":
X2 = -X2
return x1 * math.sin(abs(x1)) + x2 * math.sin(abs(x2))
def truncate_selection(chromosomes):
return [chromosomes[random.randint(0, 9)],
chromosomes[random.randint (0, 9)]]
def uniform_crossover(parents):
child = []
for x in range(22):
point = random.random()
if point > 0.5:
child.append(parents[0][x])
else:
child.append(parents[1][x])
# print(child)
return child
def mutation(child):
point = random.randint(0,21)
child[point]=(child[point]+1)%2
return child
def main():
chromosomes = [[random.randint(®, 1) for _ in range(22)] for
chromosomes.sort(key=get_fitness, reverse=True)
new_chromosomes = []
better_fitness = get_fitness(chromosomes[0])
print(better_fitness)
populations = 0
while populations<20:
for _ in range (20):
parents=truncate_selection(chromosomes)
child = uniform_crossover(parents)
child = mutation(child)
new_chromosomes.append(child)
new_chromosomes.sort(key=get_fitness, reverse=True)
#for chr in new_chromosomes:
# print(get_fitness(chr))
#print (" ")
better_fitness=get_fitness(new_chromosomes[0Q])
chromosomes = new_chromosomes
new_chromosomes = []
populations+=1
print(better_fitness)
# get_fitness(chromosomes[0Q])
#print(new_chromosomes)

in range(20)]

main()



Graph:

x*sin(abs(x)) + y*sin(abs(y)) —



