
Ex2. Matveychuk, II-11

Maximization of Test Functions

code(Python):
import random
import math
def get_fitness(chromosome):
 strChrom = ""
 for ch in chromosome:
 strChrom += str(ch)
 strChrom = strChrom[::-1]
 x1 = 5 * (int(strChrom[1:11], 2) / 1023)
 x2 = 5 * (int(strChrom[12:22], 2) / 1023)
 if strChrom[0] == "1":
 x1 = -x1
 if strChrom[12] == "1":
 x2 = -x2
 return x1 * math.sin(abs(x1)) + x2 * math.sin(abs(x2))
def truncate_selection(chromosomes):
 return [chromosomes[random.randint(0, 9)],
 chromosomes[random.randint(0, 9)]]
def uniform_crossover(parents):
 child = []
 for x in range(22):
 point = random.random()
 if point > 0.5:
 child.append(parents[0][x])
 else:
 child.append(parents[1][x])
 # print(child)
 return child
def mutation(child):
 point = random.randint(0,21)
 child[point]=(child[point]+1)%2
 return child
def main():
 chromosomes = [[random.randint(0, 1) for _ in range(22)] for _ in range(20)]
 chromosomes.sort(key=get_fitness, reverse=True)
 new_chromosomes = []
 better_fitness = get_fitness(chromosomes[0])
 print(better_fitness)
 populations = 0
 while populations<20:
 for _ in range (20):
 parents=truncate_selection(chromosomes)
 child = uniform_crossover(parents)
 child = mutation(child)
 new_chromosomes.append(child)
 new_chromosomes.sort(key=get_fitness, reverse=True)
 #for chr in new_chromosomes:
 # print(get_fitness(chr))
 #print("__________________")
 better_fitness=get_fitness(new_chromosomes[0])
 chromosomes = new_chromosomes
 new_chromosomes = []
 populations+=1
 print(better_fitness)
 # get_fitness(chromosomes[0])
 #print(new_chromosomes)
main()

Graph:

