

MINISTRY OF EDUCATION REPUBLIC OF BELARUS

ESTABLISHMENT OF EDUCATION

"BREST STATE TECHNICHNICAL UNIVERSITY"

Practice work №1

 «Evolutionary Computation»

Subject: «All One Problem»

 Made by:

 Alexey Cherkasov

 Checked by:

 Pr. Akira Imada

2016

#include "stdafx.h"
#include "time.h"
#include <iostream>
#include <fstream>

using namespace std;

double generation_x1[20][20];
double generation_x2[20][20];
double fitness[20];
double prev_min;
int gen=0;
int q=0;

ofstream file1;
ofstream file2;
ofstream file3;

void fit()
{
 for(int i=0;i<20;i++)
 {
 fitness[i]=20;
 for(int j=0;j<20;j++)
 fitness[i]+=(generation_x1[i][j]*sin(generation_x1[i][j])+generation_x2[i][j]*sin(generation_x2[i][j]));
 }

}

void sort()
{
 for(int i=0;i<20;i++)
 for(int j=0;j<20;j++)
 if(i!=j &&((i<j&&fitness[i]>fitness[j])||(i>j&&fitness[i]<fitness[j])))
 {
 for(int k=0;k<20;k++)
 {
 double gen_t=generation_x1[i][k];
 generation_x1[i][k]=generation_x1[j][k];
 generation_x1[j][k]=gen_t;
 double gen_p=generation_x2[i][k];
 generation_x2[i][k]=generation_x2[j][k];
 generation_x2[j][k]=gen_p;
 }
 double fit_t = fitness[i];
 fitness[i]=fitness[j];
 fitness[j]=fit_t;
 }
}
void cross()
{
 srand(time(NULL));
 double new_gener[20][20];
 double new_geners[20][20];
 for(int i=0;i<10;i++)
 {
 int mama=rand()%10;
 int papa=rand()%10;
 int cros_gen=rand()%18+1;
 for(int k=0;k<cros_gen;k++){
 new_gener[i*2][k]=generation_x1[mama][k];
 new_geners[i*2][k]=generation_x2[mama][k];
 }
 for(int j=cros_gen;j<20;j++){
 new_gener[i*2][j]=generation_x1[papa][j];
 new_geners[i*2][j]=generation_x2[papa][j];
 }
 for(int k=0;k<cros_gen;k++){
 new_gener[i*2+1][k]=generation_x1[papa][k];
 new_geners[i*2+1][k]=generation_x2[papa][k];
 }
 for(int j=cros_gen;j<20;j++){
 new_gener[i*2+1][j]=generation_x1[mama][j];
 new_geners[i*2+1][j]=generation_x2[mama][j];
 }
 }
 memcpy(generation_x1,new_gener,20*20*sizeof(double));
 memcpy(generation_x2,new_geners,20*20*sizeof(double));
}
void stats()
{
 cout<<"min: "<<fitness[0]<<endl;

 file1<<fitness[0]<<endl;
 double average=0;
 for(int i=0;i<20;i++)
 average+=fitness[i];
 average/=20;
 cout<<"aver: "<<average<<endl;
 file2<<gen<<endl;
 file3<<average<<endl;
 cout<<"generation: "<<++gen<<endl;
 cout<<"________________"<<endl;
 if(prev_min==fitness[0])
 q++;
 else
 {
 prev_min=fitness[0];
 q=0;
 }
}
void mutation()
{
 srand(time(NULL));
 for(int i=0;i<20;i++)
 for(int j=0;j<20;j++)
 if(rand()%20==0)
 {
 generation_x1[i][j]=(double)(rand()%101)/100;
 generation_x2[i][j]=(double)(rand()%101)/100;
 if(rand()%2)
 generation_x1[i][j]=-generation_x1[i][j];
 generation_x2[i][j]=-generation_x2[i][j];
 }
}
int _tmain(int argc, _TCHAR* argv[])
{
 srand(time(NULL));
 file1.open("min.txt",ios_base::trunc);
 file2.open("aver.txt",ios_base::trunc);
 file3.open("avertrue.txt",ios_base::trunc);
 for(int i=0;i<20;i++)
 {
 for(int j=0;j<20;j++)
 {
 generation_x1[i][j]=(double)(rand()%101)/100;
 if(rand()%2)
 generation_x1[i][j]=-generation_x1[i][j];
 generation_x2[i][j]=(double)(rand()%101)/100;
 if(rand()%2)
 generation_x2[i][j]=-generation_x2[i][j];
 }
 }
 for(int i=0;i<20000;i++)
 {
 fit();
 sort();
 stats();
 cross();
 mutation();
 }
 file1.close();
 file2.close();
 file3.close();
 return 0;
}

