
DENIS RAMSKIY II-11

Code of Program

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Laba_2
{
 class Gen
 {
 private List<int> hromosom;
 private double fitness;

 public Gen(Random rnd)
 {
 hromosom = new List<int>();
 for (int i = 0; i < 22; i++)
 hromosom.Add(rnd.Next()%2);

 List<double> temp = new List<double>(parse(hromosom));
 fitness = temp[0] * Math.Sin(Math.Abs(temp[0])) + temp[1] *
Math.Sin(Math.Abs(temp[1]));
 }

 public Gen(Gen obj)
 {
 this.hromosom = new List<int>();
 for (int i = 0; i < 22; i++)
 this.hromosom.Add(obj.get()[i]);

 this.fitness = obj.get_fitness();
 }

 public Gen(List<int> obj)
 {
 this.hromosom = new List<int>();
 for (int i = 0; i < 22; i++)
 this.hromosom.Add(obj[i]);

 List<double> temp = new List<double>(parse(hromosom));
 fitness = temp[0] * Math.Sin(Math.Abs(temp[0])) + temp[1] *
Math.Sin(Math.Abs(temp[1]));
 }

 public void set_fitness(double a)
 {
 this.fitness = a;
 }

 public List<int> get()
 {
 return hromosom;
 }

 public double get_fitness()
 {
 return fitness;
 }

 public List<double> parse(List<int> gn)

 {
 List<double> result = new List<double>();

 string str = "";
 for (int i = 1; i < 11; i++)
 str += gn[i].ToString();
 if (gn[0] == 0)
 result.Add(((double)(Convert.ToInt32(str, 2) * -1)/1023)*5);
 else
 result.Add(((double)(Convert.ToInt32(str, 2)) / 1023) * 5);

 str = "";
 for (int i = 12; i < 22; i++)
 str += gn[i].ToString();
 if (gn[0] == 0)
 result.Add(((double)(Convert.ToInt32(str, 2) * -1)/1023)*5);
 else
 result.Add(((double)(Convert.ToInt32(str, 2)) / 1023) * 5);

 return result;
 }

 static public Gen operator +(Gen obj1, Gen obj2)
 {
 obj1.get().Clear();
 for (int i = 0; i < 22; i++)
 obj1.get().Add(obj2.get()[i]);
 obj1.set_fitness(obj2.get_fitness());

 return obj1;
 }

 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Laba_2
{
 class Generation
 {
 private List<Gen> generation;
 private double fitness;

 public Generation(Random rnd)
 {
 generation = new List<Gen>();
 for (int I = 0; I < 20; I++)
 {
 Gen temp = new Gen(rnd);
 generation.Add(temp);
 fitness += temp.get_fitness();
 }
 this.sort();
 }

 public void sort()
 {
 for(int i=0;i<20;i++)
 for(int j=0;j<19;j++)

 if (generation[j].get_fitness() < generation[j +
1].get_fitness())
 {
 Gen temp = new Gen(generation[j]);
 generation[j] += generation[j + 1];
 generation[j + 1] += temp;
 }
 }

 public List<Gen> get_parents(Random rnd)
 {
 List<Gen> TEMP = new List<Gen>();
 TEMP.Add(generation[rnd.Next() % 10]);
 TEMP.Add(generation[rnd.Next() % 10]);
 return TEMP;
 }

 public Gen get_child(Random rnd,List<Gen> par)
 {
 List<int> TEMP=new List<int>();
 for (int i = 0; i < 22; i++)
 if (rnd.Next() % 2 == 0)
 TEMP.Add(par[0].get()[i]);
 else
 TEMP.Add(par[1].get()[i]);

 Gen child = new Gen(TEMP);
 return child;
 }

 public void new_generation(Random rnd)
 {
 List<Gen> ngeneration= new List<Gen>();
 double nfitness=0;
 for (int i = 0; i < 20; i++)
 {
 ngeneration.Add(this.get_child(rnd, this.get_parents(rnd)));
 nfitness += ngeneration[i].get_fitness();
 }

 for (int i = 0; i < 20; i++)
 this.generation[i] += ngeneration[i];
 this.fitness = nfitness;
 this.sort();
 }

 public double get_fitness()
 {
 return fitness;
 }

 public List<Gen> get()
 {
 return generation;
 }
 }
}

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;

namespace Laba_2
{
 class Program
 {
 static void Main(string[] args)
 {
 Random rnd = new Random(DateTime.Now.Millisecond);
 Generation work = new Generation(rnd);
 double chek = work.get_fitness();
 while (true)
 {
 work.new_generation(rnd);
 for (int i = 0; i < 20; i++)
 {
 File.AppendAllText("y.txt",
work.get()[i].get_fitness().ToString() + "\r\n");
 File.AppendAllText("x1.txt", parse(work.get()[i].get())[0] +
"\r\n");
 File.AppendAllText("x2.txt", parse(work.get()[i].get())[1] +
"\r\n");
 }
 }
 }
 static public List<double> parse(List<int> gn)
 {
 List<double> result = new List<double>();

 string str = "";
 for (int i = 1; i < 11; i++)
 str += gn[i].ToString();
 if (gn[0] == 0)
 result.Add(((double)(Convert.ToInt32(str, 2) * -1) / 1023) * 5);
 else
 result.Add(((double)(Convert.ToInt32(str, 2)) / 1023) * 5);

 str = "";
 for (int i = 12; i < 22; i++)
 str += gn[i].ToString();
 if (gn[0] == 0)
 result.Add(((double)(Convert.ToInt32(str, 2) * -1) / 1023) * 5);
 else
 result.Add(((double)(Convert.ToInt32(str, 2)) / 1023) * 5);

 return result;
 }
 }
}

My results:

Generation 2

X1 X2 Y

-4,11535 -3,88563 6,035
-0,21994 -4,69697 4,648426
-4,74585 -2,94233 4,160756
2,1261 1,691105 3,485514

-1,44184 -4,61388 3,161647

1,813294 2,932551 2,368809
0,488759 2,26784 1,968338
0,889541 2,683284 1,878149
0,180841 2,26784 1,771377
-1,4565 -4,05181 1,752457

0,268817 1,676442 1,738491
0,244379 1,036168 0,950708
-1,78886 -3,40665 -0,85408
1,783969 4,55523 -2,7555
-2,08211 -2,78104 -2,79695
-2,23363 -2,32649 -3,45387
4,43304 0,391007 -4,11217
0,180841 4,398827 -4,15182
0,180841 4,55523 -4,46657
4,706745 0,459433 -4,50294

Generation 4

X1 X2 Y

-4,85337 -4,95112 9,615918
-4,85337 -4,99022 9,604075
-4,85337 -4,99022 9,604075
-4,85337 -4,99022 9,604075
-4,85337 -4,99022 9,604075
-4,69697 -4,95112 9,507111
-4,89247 -4,36461 8,916674
-4,85337 -4,36461 8,908538
-4,85337 -4,36461 8,908538
-4,85337 -4,36461 8,908538
-4,69697 -4,36461 8,79973
-4,73607 -4,33529 8,765417
-4,69697 -4,33529 8,727086
-4,22776 -5 8,53555
-4,22776 -5 8,53555
-4,26686 -4,64809 8,488837
-4,26686 -4,63832 8,475948
-4,85337 -4,06158 8,036599
-4,26686 -4,33529 7,881022
-4,22776 -4,36461 7,844247

Generation 6

X1 X2 Y

-4,91202 -4,57967 9,353858
-4,91202 -4,57967 9,353858
-4,84848 -1,29521 3,557316
1,759531 2,209189 3,502385
-4,7263 -1,29521 3,479502

2,385142 2,116325 3,446176
-4,9218 -1,45161 3,372961

-4,85337 -1,48583 3,324753
1,608016 1,608016 3,213804
1,608016 1,603128 3,209192
2,033236 1,251222 3,00755
-4,07136 -1,60802 1,656211
4,071359 1,524927 -1,73979
4,286413 1,29521 -2,65702
2,40958 4,613881 -2,98103
4,872923 2,077224 -2,99377
4,540567 1,251222 -3,28584
4,110459 0,278592 -3,31141
4,604106 1,251222 -3,38927
4,848485 1,29521 -3,55732

Generation 11

X1 X2 Y

-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769
-4,90225 -4,94624 9,625769

