
DENIS RAMSKIY II-11

Code of Program

Class of working with gene
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Gen_Alg_Lab_2
{
 class Gen
 {
 private List<int> hromosom;
 private double fitness;

 public Gen(Random rnd)
 {
 hromosom = new List<int>();
 for (int i = 0; i < 22; i++)
 hromosom.Add(rnd.Next() % 2);

 List<double> temp = new List<double>(parse(hromosom));
 fitness = temp[0] * Math.Sin(Math.Abs(temp[0])) + temp[1] * Math.Sin(Math.Abs(temp[1]));
 }
 public Gen(Gen obj)
 {
 this.hromosom = new List<int>();
 for (int i = 0; i < 22; i++)
 this.hromosom.Add(obj.get()[i]);

 this.fitness = obj.get_fitness();
 }
 public Gen(List<int> obj)
 {
 this.hromosom = new List<int>();
 for (int i = 0; i < 22; i++)
 this.hromosom.Add(obj[i]);

 List<double> temp = new List<double>(parse(hromosom));
 fitness = temp[0] * Math.Sin(Math.Abs(temp[0])) + temp[1] * Math.Sin(Math.Abs(temp[1]));
 }

 public void mutation(Random rnd)
 {
 int palace = rnd.Next() % 22;
 if (hromosom[palace] == 1)
 hromosom[palace] = 0;
 else
 hromosom[palace] = 1;
 }
 public List<double> parse(List<int> gn)
 {
 List<double> result = new List<double>();

 string str = "";
 for (int i = 1; i < 11; i++)
 str += gn[i].ToString();
 result.Add(((double)(Convert.ToInt32(str, 2)) / 1023) * 5);
 if (gn[0] == 0)
 result[0] *= -1;

 str = "";
 for (int i = 12; i < 22; i++)
 str += gn[i].ToString();
 result.Add(((double)(Convert.ToInt32(str, 2)) / 1023) * 5);
 if (gn[0] == 0)
 result[1] *= -1;

 return result;
 }
 static public Gen operator +(Gen obj1, Gen obj2)
 {
 obj1.get().Clear();
 for (int i = 0; i < 22; i++)
 obj1.get().Add(obj2.get()[i]);
 obj1.set_fitness(obj2.get_fitness());

 return obj1;
 }

 public void set_fitness(double a)
 {
 this.fitness = a;
 }
 public List<int> get()
 {
 return hromosom;
 }
 public double get_fitness()
 {
 return fitness;
 }
 }
}

Class of working with generation

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Gen_Alg_Lab_2
{
 class Generation
 {
 private List<Gen> generation;
 private double fitness;

 public Generation(Random rnd)
 {
 generation = new List<Gen>();
 for (int I = 0; I < 20; I++)
 {
 Gen temp = new Gen(rnd);
 generation.Add(temp);
 fitness += temp.get_fitness();
 }
 this.sort();
 }
 public void sort()
 {
 for (int i = 0; i < 20; i++)
 for (int j = 0; j < 19; j++)

 if (generation[j].get_fitness() < generation[j + 1].get_fitness())
 {
 Gen temp = new Gen(generation[j]);
 generation[j] += generation[j + 1];
 generation[j + 1] += temp;
 }
 }

 public List<Gen> get_parents(Random rnd)
 {
 List<Gen> TEMP = new List<Gen>();
 TEMP.Add(generation[rnd.Next() % 10]);
 TEMP.Add(generation[rnd.Next() % 10]);
 return TEMP;
 }
 public Gen get_child(Random rnd, List<Gen> par)
 {
 List<int> TEMP = new List<int>();
 for (int i = 0; i < 22; i++)
 if (rnd.Next() % 2 == 0)
 TEMP.Add(par[0].get()[i]);
 else
 TEMP.Add(par[1].get()[i]);

 Gen child = new Gen(TEMP);
 if (rnd.Next() % 1000 < 10)
 child.mutation(rnd);
 return child;
 }
 public void new_generation(Random rnd)
 {
 List<Gen> ngeneration = new List<Gen>();
 double nfitness = 0;
 for (int i = 0; i < 20; i++)
 {
 ngeneration.Add(this.get_child(rnd, this.get_parents(rnd)));
 nfitness += ngeneration[i].get_fitness();
 }

 for (int i = 0; i < 20; i++)
 this.generation[i] += ngeneration[i];
 this.fitness = nfitness;
 this.sort();
 }

 public double get_fitness()
 {
 return fitness;
 }
 public List<Gen> get()
 {
 return generation;
 }
 }
}

Main program class

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.IO;

namespace Gen_Alg_Lab_2
{
 class Program
 {
 static void Main(string[] args)
 {
 Random rnd = new Random(DateTime.Now.Millisecond);
 Generation work = new Generation(rnd);

 File.WriteAllText("y.txt", "");
 File.WriteAllText("x1.txt", "");
 File.WriteAllText("x2.txt", "");
 File.WriteAllText("fitness.txt", "");
 File.WriteAllText("gen_fitness.txt", "");

 while (true)
 {
 work.new_generation(rnd);
 for (int i = 0; i < 20; i++)
 {
 File.AppendAllText("y.txt", work.get()[i].get_fitness().ToString() + "\r\n");
 File.AppendAllText("x1.txt", parse(work.get()[i].get())[0] + "\r\n");
 File.AppendAllText("x2.txt", parse(work.get()[i].get())[1] + "\r\n");
 }
 File.AppendAllText("fitness.txt", work.get()[0].get_fitness() + "\r\n");
 File.AppendAllText("gen_fitness.txt", work.get_fitness() + "\r\n");

 File.AppendAllText("y.txt", "\r\n\r\n");
 File.AppendAllText("x1.txt", "\r\n\r\n");
 File.AppendAllText("x2.txt", "\r\n\r\n");
 }
 }

 static public List<double> parse(List<int> gn)
 {
 List<double> result = new List<double>();

 string str = "";
 for (int i = 1; i < 11; i++)
 str += gn[i].ToString();
 result.Add(((double)(Convert.ToInt32(str, 2)) / 1023) * 5);
 if (gn[0] == 0)
 result[0] *= -1;

 str = "";
 for (int i = 12; i < 22; i++)
 str += gn[i].ToString();
 result.Add(((double)(Convert.ToInt32(str, 2)) / 1023) * 5);
 if (gn[0] == 0)
 result[1] *= -1;

 return result;
 }
 }
}

My results:

best fitness generation fitness

6,635524417 2,1951397

6,635524417 2,572840364

9,60804426 2,882155466

9,627960725 2,713054934

9,627960725 3,469587314

9,604019931 8,493067863

9,604019931 9,513383727

9,609762244 9,582030812

9,611812097 9,60049037

9,611812097 9,603523173

9,611812097 9,606747189

9,611812097 9,609864055

9,611812097 9,611812097

9,611812097 9,611812097

9,611812097 9,611812097

Generation 1

X1 X2 Y

-3,68035 -4,75073 6,635524

-3,53372 -4,89247 6,1638

-4,31574 -3,47996 5,135831

-3,28446 -3,95406 3,33822

1,955034 1,280547 3,039467

2,751711 2,174976 2,835805

1,021505 1,871945 2,658938

1,783969 1,050831 2,655537

1,886608 1,001955 2,637478

-4,24731 -1,55914 2,237158

2,917889 1,549365 2,196322

1,050831 1,197458 2,026921

2,018573 0,337243 1,931155

1,344086 0,024438 1,310289

-2,913 -3,6999 1,299932

0,645161 0,694037 0,831891

0,747801 0,42522 0,683937

3,680352 2,258065 -0,14284

1,383187 3,611926 -0,27795

4,081134 0,004888 -3,29462

Generation 4

X1 X2 Y

-4,93157 -4,90714 9,627961

-4,65787 -4,83382 9,449174

-4,34506 -4,80938 8,841988

-3,59726 -4,91202 6,397493

-3,09384 -4,75073 4,599563

-3,09384 -4,75073 4,599563

-3,07429 -4,73118 4,523599

1,959922 2,248289 3,565147

2,1261 2,258065 3,552076

1,969697 2,414467 3,420009

2,043011 2,487781 3,332539

-2,34604 -4,90714 3,138715

-2,39003 -4,73118 3,098479

-1,97947 -4,74096 2,922565

-2,46823 -4,50147 2,862473

-4,35484 -1,75953 2,35114

4,545455 1,86217 -2,69859

-2,03812 -2,49756 -3,31919

3,29912 4,765396 -6,39557

4,868035 4,990225 -9,60804

Generation 7

X1 X2 Y

-4,97067 -4,83382 9,60402

-4,97067 -4,82893 9,60197

-4,93157 -4,80938 9,600364

-4,97067 -4,81427 9,595101

-4,97067 -4,81427 9,595101

-4,97067 -4,75073 9,553035

-4,97067 -4,75073 9,553035

-4,97067 -4,75073 9,553035

-4,97067 -4,75073 9,553035

-4,93157 -4,73607 9,548328

-4,93157 -4,73607 9,548328

-4,97067 -4,73607 9,540536

-4,97067 -4,73118 9,536141

-4,97067 -4,73118 9,536141

-4,97067 -4,73118 9,536141

-4,65787 -4,75073 9,398189

-4,61877 -4,82893 9,394718

-4,61877 -4,75073 9,345783

-4,61877 -4,75073 9,345783

-4,61877 -4,73118 9,328889

Generation 11

X1 X2 Y

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,82893 9,609762

-4,97067 -4,83382 9,60402

-4,97067 -4,83382 9,60402

-4,97067 -4,83382 9,60402

-4,97067 -4,83382 9,60402

-4,97067 -4,83382 9,60402

-4,97067 -4,83382 9,60402

-4,97067 -4,83382 9,60402

-4,93157 -4,81427 9,602893

-4,93157 -4,81427 9,602893

-4,97067 -4,82893 9,60197

-4,97067 -4,82893 9,60197

-4,97067 -4,82893 9,60197

-4,97067 -4,82893 9,60197

-4,97067 -4,82893 9,60197

-4,93157 -4,80938 9,600364

-4,93157 -4,80938 9,600364

-4,97067 -4,80938 9,592572

Generation 15

X1 X2 Y

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

-4,93157 -4,83382 9,611812

