
Source code on JS:

var population = init();

 var sigma = 1.5;

 var alpha = 2;

 function randomInit() {

 return Math.random() > 0.5 ? 1 : 0;

 }

 function sort(population) {

 return population.sort(function(first, second){

 return (first.fitness < second.fitness) - (second.fitness < first.fitness);

 });

 }

 function init(){

 var population = [];

 for(var i = 0; i < 20; i++){

 var chromosome = [];

 for(var j = 0; j < 22; j++) {

 chromosome.push(randomInit());

 }

 population.push(chromosome);

 }

 return population;

 }

 function getX(chromosome) {

 var x = 0;

 for(var i = 1; i < 11; i++) {

 x += chromosome[i] ? Math.pow(2, i - 1) / 2048 * 5 : 0;

 }

 x *= chromosome[0] ? -1 : 1;

 return x;

 }

 function getY(chromosome){

 var y = 0;

 for(var i = 11; i < 22; i++){

 y += chromosome[i] ? Math.pow(2, i - 11) / 2048 * 5: 0;

 }

 y *= chromosome[11] ? -1 : 1;

 return y;

 }

 function getS(d){

 return d < sigma ? 1 - Math.pow(d / sigma, alpha) : 0;

 }

 function fitness(population){

 for(var i = 0; i < 20; i++) {

 var x = getX(population[i]);

 var y = getY(population[i]);

 population[i].fitness = x * Math.sin(x) + y * Math.sin(y)

 }

 return population;

 }

 function sharedFitness(population){

 var memPopulation = population;

 for(var i = 0; i < 20; i++) {

 for(var j = 0; j < 20; j++) {

 var x = getX(population[i]) - getX(population[j]);

 var y = getY(population[i]) - getY(population[j]);

 }

 var d = Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));

 population[i].fitness += getS(d);

 }

 return population;

 }

 function uniformCrossover(firstChromosome, secondChromosome) {

 var returnChromosomes = [];

 var returnChromosome1 = [];

 var returnChromosome2 = [];

 for(var i = 0; i < 22; i++){

 Math.random() > 0.5 ? returnChromosome1.push(firstChromosome[i]) :

 returnChromosome1.push(secondChromosome[i]);

 Math.random() > 0.5 ?

returnChromosome2.push(secondChromosome[i]) :

 returnChromosome2.push(firstChromosome[i]);

 }

 returnChromosomes.push(returnChromosome1);

 returnChromosomes.push(returnChromosome2);

 return returnChromosomes;

 }

 function mutation(population){

 return population.map(function(chromosome) {

 return chromosome.map(function(gene) {

 return Math.random() < 0.02 ? (gene + 1) % 2 : gene;

 });

 });

 }

 function arrayComparison(prev, cur) {

 var flag = true;

 for(var i = 0; i < 20; i++){

 prev[i].fitness === cur[i].fitness ? flag : flag = false;

 }

 return flag;

 }

 function show(population) {

 var returnStr = '';

 var averageFitness = 0;

 for(var i = 0; i < 20; i++) {

 averageFitness += population[i].fitness;

 returnStr += i + '\t' + getX(population[i]).toFixed(3) + '\t ' +

getY(population[i]).toFixed(3) + '\t' + population[i].fitness + '\n';

 }

 returnStr += 'max: ' + population[i].fitness + '\n';

 returnStr += 'aver: ' + (averageFitness / 20) + '\n';

 console.log(returnStr);

 }

 population = fitness(population);

 population = sort(population);

 population = sharedFitness(population);

 population = sort(population);

 var prevPopulation = [];

 var iteration = 0;

 var statisticArray = [];

 while(true){

 prevPopulation = population;

 var parents = population.slice(0, 10);

 var children = [];

 for(var j = 0; j < 10; j++){

 var tempChild = uniformCrossover(parents[Math.floor(Math.random() *

10)],

 parents[Math.floor(Math.random() * 10)]);

 children.push(tempChild[0]);

 children.push(tempChild[1]);

 }

 children = mutation(children);

 children = fitness(children);

 var newPopulation = [];

 newPopulation = newPopulation.concat(children, parents);

 newPopulation = sharedFitness(newPopulation);

 newPopulation = sort(newPopulation);

 population = newPopulation;

 iteration++;

 statisticArray.push(newPopulation);

 if(arrayComparison(prevPopulation, newPopulation)){

 break;

 }

 }

 var statistic = [];

 for(var i = 0; i < statisticArray.length; i += Math.floor(statisticArray.length / 4)){

 statistic.push(statisticArray[i]);

 }

 statistic.push(statisticArray[statisticArray.length - 1]);

 for(var i = 0; i < statistic.length; i++){

 show(statistic[i]);

 }

 for(var i = 0; i < statisticArray.length;i++){

 var strLog = '';

 var averSum = 0;

 for(var j = 0; j < 20; j++){

 averSum += statisticArray[i][j].fitness;

 }

 var temp = sort(statisticArray[i]);

 strLog += statisticArray[i][0].fitness + '\t ' + averSum / 20;

 console.log(strLog);

 }

#0
x y fitness(z)

0 2,158 -2,625 3,09386

1 -1,311 2,563 2,667856

2 -1,121 -2,375 2,655958

3 1,387 2,646 2,620707

4 1,46 2,705 2,594665

5 -0,969 -2,375 2,446098

6 -1,292 2,7 2,394991

7 1,985 0,747 2,324755

8 -1,97 0,742 2,31678

9 -1,89 0,635 2,170811

10 2,249 -0,5 1,991753

11 2,273 -0,5 1,975452

12 2,078 -0,315 1,913998

13 2,151 0,122 1,813897

14 1,414 3,154 1,684596

15 -2,3 -3,152 1,682929

16 -0,508 2,598 1,591241

17 0,867 -2,82 1,55235

18 -0,891 -2,834 1,549986

19 -2,117 -3,235 1,507775

#4
x y fitness(z)

0 1,985 1,997 3,635485

1 -2,053 1,934 3,626624

2 -1,975 1,938 3,624776

3 2,063 1,919 3,62193

4 1,99 1,919 3,621486

5 -1,907 1,953 3,612258

6 -1,907 1,953 3,612258

7 -1,907 2,109 3,610921

8 1,821 2,114 3,574091

9 -2,224 -1,899 3,563877

10 -2,263 -1,958 3,555075

11 -2,253 -1,895 3,544593

12 -2,327 -1,938 3,501978

13 2,253 -1,797 3,499625

14 -2,327 -1,895 3,48918

15 -2,371 2,061 3,470271

16 -2,38 2,041 3,461497

17 -2,38 2,061 3,460325

18 -2,38 2,061 3,460325

19 2,38 -2,09 3,45659

#8
x y fitness(z)

0 -2,024 2,017 3,639181

1 2,004 2,017 3,638414

2 2,004 -2,017 3,638414

3 -2,004 -1,997 3,637266

4 2,004 -1,997 3,637266

5 2,004 -1,997 3,637266

6 1,99 -2,017 3,637173

7 1,99 -2,017 3,637173

8 -1,985 -2,026 3,636825

9 1,985 2,017 3,636633

10 1,985 2,017 3,636633

11 1,985 2,017 3,636633

12 1,985 2,017 3,636633

13 1,985 2,017 3,636633

14 1,985 2,017 3,636633

15 1,985 2,017 3,636633

16 1,985 2,017 3,636633

17 -1,985 2,017 3,636633

18 1,985 2,017 3,636633

19 -1,985 2,017 3,636633

#12
x y fitness(z)

0 2,029 2,017 3,639212

1 -2,024 2,017 3,639181

2 -2,024 2,017 3,639181

3 -2,024 2,017 3,639181

4 2,024 -2,017 3,639181

5 2,024 -2,017 3,639181

6 -2,024 -2,017 3,639181

7 2,024 -2,017 3,639181

8 -2,024 -2,017 3,639181

9 2,024 -2,017 3,639181

10 -2,024 2,017 3,639181

11 -2,024 2,017 3,639181

12 2,024 2,017 3,639181

13 -2,024 2,017 3,639181

14 -2,024 2,017 3,639181

15 -2,024 2,017 3,639181

16 -2,024 2,017 3,639181

17 -2,024 2,017 3,639181

18 -2,024 2,017 3,639181

19 -2,024 2,017 3,639181

#16
x y fitness(z)

0 -2,024 2,026 3,639372

1 2,024 2,026 3,639372

2 2,024 2,026 3,639372

3 2,029 -2,019 3,639284

4 2,029 -2,019 3,639284

5 2,029 2,019 3,639284

6 2,029 2,019 3,639284

7 -2,024 2,019 3,639253

8 -2,024 2,019 3,639253

9 -2,024 -2,019 3,639253

10 -2,024 -2,019 3,639253

11 -2,024 -2,019 3,639253

12 2,024 -2,019 3,639253

13 2,024 -2,019 3,639253

14 -2,024 -2,019 3,639253

15 2,024 -2,019 3,639253

16 2,024 -2,019 3,639253

17 2,024 -2,019 3,639253

18 -2,024 -2,019 3,639253

19 2,029 2,017 3,639212

maximum average

3,0939 2,1275

3,6355 2,6559

3,6355 3,1573

3,6355 3,3757

3,6355 3,5502

3,6355 3,6215

3,6384 3,6316

3,6384 3,6359

3,6392 3,6371

3,6392 3,6375

3,6392 3,6380

3,6392 3,6390

3,6392 3,6392

3,6393 3,6392

3,6394 3,6392

3,6394 3,6393

2,8

2,9

3

3,1

3,2

3,3

3,4

3,5

3,6

3,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

maximum

0

0,5

1

1,5

2

2,5

3

3,5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

average

