Source code on JS:
var population = init();
var sigma = 1.5;

var alpha = 2;

function randomilnit() {

return Math.random() >0.5?1:0;

function sort(population) {
return population.sort(function(first, second){
return (first.fitness < second.fitness) - (second.fitness < first.fitness);

1;

function init(){

var population = [];

for(vari=0; i< 20; i++){
var chromosome = [J;
for(varj=0;j<22;j++){
chromosome.push(randomilnit());

}

population.push(chromosome);

}

return population;

function getX(chromosome) {

var x=0;

for(vari=1;i<11;i++) {



X += chromosomeli] ? Math.pow(2,i-1) /2048 *5:0;

}

X *= chromosome[0] ?-1: 1;

return x;

function getY(chromosome){

vary =0;

for(vari=11;i<22;i++){
y += chromosome[i] ? Math.pow(2, i - 11) / 2048 * 5: 0;

}

y *=chromosome[11] ? -1: 1,

returny;
}
function getS(d){

return d < sigma ? 1 - Math.pow(d / sigma, alpha) : 0;
}

function fitness(population){
for(vari=0;i<20;i++) {
var x = getX(population[i]);

var y = getY(population[i]);

population[i].fitness = x * Math.sin(x) + y * Math.sin(y)
}

return population;



function sharedFitness(population){

var memPopulation = population;

for(vari=0;i<20;i++) {
for(varj=0;j < 20; j++) {
var x = getX(population[i]) - getX(populationlj]);
var y = getY(population[i]) - getY(populationlj]);
}
var d = Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
population[i].fitness += getS(d);
}

return population;

function uniformCrossover(firstChromosome, secondChromosome) {
var returnChromosomes = [;
var returnChromosomel = [J;

var returnChromosome?2 = [];

for(vari=0;i<22;i++{
Math.random() > 0.5 ? returnChromosomel.push(firstChromosome[il) :
returnChromosomel.push(secondChromosomeli]);

Math.random() > 0.5 ?
returnChromosome2.push(secondChromosomeli]) :

returnChromosome2.push(firstChromosomeli]);

}
returnChromosomes.push(returnChromosomel);

returnChromosomes.push(returnChromosome2);

return returnChromosomes;

function mutation(population){



return population.map(function(chromosome) {
return chromosome.map(function(gene) {
return Math.random() < 0.02 ? (gene + 1) % 2 : gene;
1;
};

function arrayComparison(prev, cur) {
var flag = true;
for(vari=0;i<20;i++){
prevlil.fitness === curli].fitness ? flag : flag = false;
}

return flag;

function show(population) {
var returnStr="";
var averageFitness = 0;
for(vari=0;i<20;i++) {
averageFitness += population[i].fitness;

returnStr +=i + '\t' + getX(population[i]).toFixed(3) + '\t ' +
getY(population[i]).toFixed(3) + '\t' + population[i].fitness + '\n';

}
returnStr += 'max: ' + population[i].fitness + '\n';

returnStr +='aver: ' + (averageFitness / 20) + '\n';

console.log(returnStr);

population = fitness(population);
population = sort(population);
population = sharedFitness(population);

population = sort(population);



var prevPopulation = [];
var iteration = 0;

var statisticArray = [J;

while(true){
prevPopulation = population;
var parents = population.slice(0, 10);
var children = [];
for(varj=0;j < 10; j++){

var tempChild = uniformCrossover(parents[Math.floor(Math.random() *
10)1,

parents[Math.floor(Math.random() * 10)]);
children.push(tempChild[0]);

children.push(tempChild[1]);

}

children = mutation(children);

children = fitness(children);

var newPopulation = [];
newPopulation = newPopulation.concat(children, parents);
newPopulation = sharedFitness(newPopulation);

newPopulation = sort(newPopulation);

population = newPopulation;

iteration++;

statisticArray.push(newPopulation);
if(arrayComparison(prevPopulation, newPopulation)){

break;



var statistic = [];
for(vari=0; i < statisticArray.length; i += Math.floor(statisticArray.length / 4)){

statistic.push(statisticArray[i]);

statistic.push(statisticArray[statisticArray.length - 1]);

for(vari=0; i < statistic.length; i++){

show(statistic[i]);

for(vari=0; i < statisticArray.length;i++){
var strLog =";
var averSum =0;
for(varj=0;j < 20; j++){
averSum += statisticArray[i][j].fitness;
}
var temp = sort(statisticArrayl[i]);
strLog += statisticArray[i][0].fitness + '\t ' + averSum / 20;

console.log(strLog);



#0

O 0O NOOULL A~ WNPERL O

10
11
12
13
14
15
16
17
18
19

2,158
-1,311
1,121
1,387
1,46
-0,969
-1,292
1,985
-1,97
-1,89
2,249
2,273
2,078
2,151
1,414
2,3
-0,508
0,867
-0,891
2,117

-2,625
2,563
-2,375
2,646
2,705
-2,375
2,7
0,747
0,742
0,635
-0,5
-0,5
-0,315
0,122
3,154
-3,152
2,598
-2,82
-2,834
-3,235

fitness(z)

3,09386
2,667856
2,655958
2,620707
2,594665
2,446098
2,394991
2,324755

2,31678
2,170811
1,991753
1,975452
1,913998
1,813897
1,684596
1,682929
1,591241

1,55235
1,549986
1,507775




#4

O 0O NOOULL A~ WNPERL O

10
11
12
13
14
15
16
17
18
19

1,985
-2,053
-1,975

2,063

1,99
-1,907
-1,907
-1,907

1,821
-2,224
-2,263
-2,253
-2,327

2,253
-2,327
-2,371

-2,38

-2,38

-2,38

2,38

1,997
1,934
1,938
1,919
1,919
1,953
1,953
2,109
2,114
-1,899
-1,958
-1,895
-1,938
-1,797
-1,895
2,061
2,041
2,061
2,061
-2,09

fitness(z)
3,635485
3,626624
3,624776

3,62193
3,621486
3,612258
3,612258
3,610921
3,574091
3,563877
3,555075
3,544593
3,501978
3,499625

3,48918
3,470271
3,461497
3,460325
3,460325

3,45659




fitness(z)
3,639181
3,638414
3,638414
3,637266
3,637266
3,637266
3,637173
3,637173
3,636825
3,636633
3,636633
3,636633
3,636633
3,636633
3,636633
3,636633
3,636633
3,636633
3,636633
3,636633




#12

O 0O NOOULL A~ WNPERL O

10
11
12
13
14
15
16
17
18
19

2,029
-2,024
-2,024
-2,024

2,024

2,024
-2,024

2,024
-2,024

2,024
-2,024
-2,024

2,024
-2,024
-2,024
-2,024
-2,024
-2,024
-2,024
-2,024

2,017
2,017
2,017
2,017

2,017

2,017

-2,017

-2,017

-2,017

-2,017
2,017
2,017
2,017
2,017
2,017
2,017
2,017
2,017
2,017
2,017

fitness(z)
3,639212
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181
3,639181




#16

O 0O NOOULL A~ WNPERL O

R R R R R R R R R R
OO ~NOUID WNEKELRO

-2,024
2,024
2,024
2,029
2,029
2,029
2,029

-2,024

-2,024

-2,024

-2,024

-2,024
2,024
2,024

-2,024
2,024
2,024
2,024

-2,024
2,029

2,026
2,026
2,026
-2,019
-2,019
2,019
2,019
2,019
2,019
-2,019
-2,019
-2,019
-2,019
-2,019
-2,019
-2,019
-2,019
-2,019
-2,019
2,017

fitness(z)
3,639372
3,639372
3,639372
3,639284
3,639284
3,639284
3,639284
3,639253
3,639253
3,639253
3,639253
3,639253
3,639253
3,639253
3,639253
3,639253
3,639253
3,639253
3,639253
3,639212




maximum
3,0939
3,6355
3,6355
3,6355
3,6355
3,6355
3,6384
3,6384
3,6392
3,6392
3,6392
3,6392
3,6392
3,6393
3,6394
3,6394

average
2,1275
2,6559
3,1573
3,3757
3,5502
3,6215
3,6316
3,6359
3,6371
3,6375
3,6380
3,6390
3,6392
3,6392
3,6392
3,6393

3,7
3,6
3,5
34
3,3
3,2
31

2,9
2,8

3,5

2,5

1,5

0,5

maximum
C——C < < < < < < < < L ]
6 7 8 9 10 11 12 13 14 15 16
average
e < C——=C < < < < o

10

11

12

13

14

15

16



